Omega (3-6-9) ပေါင်းထားရင်မကောင်းဘူး

Source from Kelvin Power’s Facebook on August 22, 2019

Omega (3-6-9)
ပေါင်းထားရင်ကောင်းတယ်မကောင်းဘူးဆိုတာအငြင်းပွားစရာဖြစ်နေကြတယ်။ဒီနေရာမှာအလွန်အရေးကြီးတာတစ်ခုပြောချင်တယ်။အိုမီဂါ(၆)နဲ့အိုမီကာ(၃)အချိုး(omega-6 to omega-3 ratio)ဆိုတာအလွန်အရေးကြီးတယ်။အဲဒါမြန်မာပြည်မှာတိုင်းလို့ရဦးမယ်မထင်ဘူး။တိုင်းလို့ရရင်လဲဘယ်မှာတိုင်းလို့ရတယ်ပြောပြကြပါ။

Omega (3-6-9)ကိစ္စကိုပိုရှင်းအောင်ပြောပါမယ်။(Omega3)နဲ့(Omega6)နှစ်ခုလုံး
(essential fatty acids)မရှိမဖြစ်လိုအပ်တယ်ဆိုတာမှန်တယ်။ခန္ဓာကိုယ်ကထုတ်ကိုမထုတ်နိုင်ဘူး။မရှိရင်ဖြစ်ကိုမဖြစ်ဘူးဆိုတာလဲမှန်တယ်။
ဒါပေမဲ့(omega-6 to omega-3 ratio)ဆိုတာကသိပ်အရေးကြီးတယ်။အဲဒီ(ratio)မြင့်ရင်(inflammation)တစ်ကိုယ်လုံးမှာဖြစ်တယ်။အဲဒီ(ratio)ကို(2:1)(3:1)လောက်ရအောင်ကျိုးစားနိုင်ရင်(inflammation)မဖြစ်တော့လို့ဘာ(Chronic diseases)ရောဂါမှမဖြစ်နိုင်တော့ဘူး။
(Omega6)ရော(omega3)ရောနှစ်ခုစလုံးလိုအပ်တာမှန်တယ်။ဒါပေမဲ့လူတိုင်းမှာ(Omega6)သိပ်များနေပြီး၊(Omega3)နည်းနေတယ်။အခုခေတ်လူတိုင်းမှာ(omega-6 to omega-3 ratio)က(20:1)ဖြစ်နေကြတယ်။ကျွန်တော်တို့လိုချင်တာက(2:1)လောက်။ အိုမီကာ(၆)ကလိုအပ်တာထက်(၁၀)ဆလောက်များနေတယ်(သို့မဟုတ်)အိုမီကာ(၃)ကလိုအပ်တာထက်(၁၀)ဆလောက်နဲနေတယ်။ကဲဘာလုပ်ကြမလဲ?။ရှင်းရှင်းလေးပဲအိုမီကာ(၆)ကိုအတတ်နိုင်ဆုံးရှောင်ရမယ်။အိုမီကာ(၃)ကိုရသလောက်တိုးပေးရမယ်။
အဲဒါအိုမီကာ(၃)ကိုမသောက်ပဲ၊ဘာကြောင့်(၃၊၆၊၉)သောက်လဲဆိုတာကျွန်တော်နားမလည်ဘူး။(၃၆၉)ဂဏန်းကြိုက်လို့ထင်တယ်။

လူတိုင်းစားသုံးနေတဲ့အဆီတွေထဲမှာ(Omega6)မပါတဲ့အစားအစာ၊အဆီတစ်ခုမှမရှိဘူး(PUFA) ရဲ့(95%)လောက်က(omega6)တွေကြီးပဲ။အဲဒါကြောင့်(inflammation) ဖြစ်နေကြတာ။(autoimmune diseases)နဲ့ကင်ဆာရောဂါတွေရဲ့အဓိကလက်သယ်က(Omega6)ပဲ။
—–
(Omega6)က(inflammatory)။(Omega3)က(anti-inflammatory)။
လူတိုင်းလူတိုင်းမှာ(Omega6)တွေသိပ်များနေလို့၊များနေတဲ့(Omega6)ကိုချေပစေချင်လို့(Omega3)သောက်တာ။
(Omega6)ကိုတိုက်ဖျက်ပြစ်ချင်လို့သောက်တာ။(Omega6)ကိုထပ်သောက်မှတော့ဘယ်တော့မှ(Omega6 to Omega3 ratio)ကျမသွားနိုင်ဘူး။ပိုတက်လာရုံပဲ။ဘာမှမသောက်ပဲနေတာထက်ကိုပိုဆိုးတယ်။Omega (3-6-9)သောက်တာဟာပိုက်ဆံအကုန်ခံပြီးရောဂါအားလုံးဖြစ်စေမယ့်(inflammation)ကိုဝယ်လိုက်တာပါပဲ။
———-
လောကမှာချွင်းချက်တော့ရှိတယ်။အဲဒီသောက်တဲ့(Omega6)ဟာ(GLA)လို့ခေါ်တဲ့(Gamma Linolenic Acid)တွေအဓိကဖြစ်နေတယ်ဆိုရင်တော့(GLA)ဟာ(inflammation)မဖြစ်လို့အန္တရာယ်မရှိဘူး။ဒါပေမဲ့သေချာတာတစ်ခုကအမေရိကန်ဆိုတာအရင်းရှင်နိုင်ငံ၊အမေရိကန်မှာရှိတဲ့အရင်းရှင်တွေကဆေးတွေထုတ်ရောင်းနေတာခင်ဗျားတို့ကိုကျန်းမာစေချင်လို့မဟုတ်ဘူးဆိုတာမြဲမြဲမှတ်ထားကြပါ။အမြတ်များများရချင်လို့ထုတ်ရောင်းနေတာ။(GLA)ကသိပ်ဈေးကြီးတယ်။သူ့ကိုဘယ်အရင်းရှင်မှအဓိကထားမထည့်ပေးဘူး။Omega(3,6,9)လုပ်ကတည်းကပိုမြတ်ချင်လို့လုပ်တာ။(Omega3)ကဈေးကြီးတယ်။USAမှာ(Omega6)ကချီးပေါသေးပေါ။(Omega9)ကလဲဈေးပေါတယ်။မြတ်ချင်လို့အရင်းရှင်တွေဂျင်းရောထည့်ပေးလိုက်တာ။နွားနို့ကိုထောပါတ်ထုတ်ရောင်းပြစ်ပြီး၊ကျန်တဲ့အရည်ကျဲလွင့်ပြစ်ရမယ့်အရည်ကိုသိပ်ကျန်းမာတဲ့(FAT FREE SKIM MILK)ဆိုပြီးဂျင်းထည့်ရောင်းလိုက်သလိုပဲ။ကျွန်တော်ကအရင်းရှင်တွေအကြောင်းနောကျေနေပြီ။
—-
(GLA)ဆိုတာလုပ်စားလို့ကောင်းအောင်နာမည်လေးပဲပါတာပါ။အောက်ကပုံကိုကြည့်လိုက်ပါ(total Omega 6)က(420mg)တောင်ပါတယ်။(GLA)ကြည့်လိုက်(2mg)ပဲပါတယ်။ရာခိုင်နုန်းနဲ့ဆို(0.4%)လောက်ပဲပါတာ။ဘာသွားသုံးစားလို့ရမလဲ။တကယ်ဆိုစားသုံးသူတွေဒုက္ခမရောက်အောင်(total Omega 6- 420mg)မှာ (GLA)က(300mg)လောက်တော့ပါသင့်တာပေါ့။(420mg မှာမှ GLA 2mg)ပဲပါတယ်။လူပြောခံရမှာစိုးလို့နာမည်ကောင်းအောင်မဖြစ်လို့ထည့်ပေးတာစေတနာရှိလို့တော့မဟုတ်ဘူး။(omega6)မကောင်းမှန်းဒီကောင်တွေပိုပြီးသိတယ်။ဒါပေမဲ့အရေးကြီးတာကအမြတ်ကျန်ဖို့ပဲ။(Omega6)က(USA)မှာချီးပေါသေးပေါပေါတယ်။(GMO Corn)နဲ့(GMO Soybean)ကလာတာ။အောက်ပုံမှာပြထားတဲ့(Member’s Mark)တံဆိပ်က(2mg)ပါတာကျေးဇူးတင်ရဦးမယ်။ခင်ဗျားတို့မြန်မာပြည်မှာယုံကြည်စိတ်ချစွာသောက်သုံးနေတဲ့(Nature Made)တံဆိပ်တ(GLA)တစ်စက်မှကိုမပါဘူးဂျင်းစစ်စစ်။ပဲပုတ်စေ့ဆီ(Soybean Oil )ကို(OMEGA6)ဆိုပြီးဆေးတောင့်ထဲထည့်ရောင်းတာ။အဲဒီ(Omega6)ဝယ်စားမဲ့အတူတူကတော့(City Mart)သွားပြီး(ပဲပုတ်စေ့ဆီ)ဝယ်စား၊အတူတူပဲ။
—-
ရှင်းအောင်ပြောပါမယ်။ဒီတံဆိပ်နှစ်ခုတည်းတော့မဟုတ်ပါဘူး။အရင်းရှင်ကအရင်းရှင်ပါပဲ။နာမည်ကြီးနေတဲ့တံဆိပ်အားလုံး(omega6)ဆိုရင်အန္တရာယ်မရှိတဲ့(GLA)တဝက်တောင်မပါဘူး။အန္တရာယ်ရှိတဲ့(PUFA)တွေကြီးကြီးပဲအဓိကထည့်ထားတာ။ကုမ္မဏီကြီးတွေအားလုံးအတူတူပဲ။အမေရိကန်ဆိုပြီးတော့သိပ်လဲအထင်မကြီးနဲ့ဦး။အရင်းရှင်နိုင်ငံဆိုတာမှတ်ထားပါ။အမေရိကန်ကုမ္မဏီကြီးတွေအများစုကဂျင်းသိပ်များတယ်။သေချာလုပ်တဲ့ကုမ္မဏီငယ်လေးတွေတချို့တော့ရှိပါတယ်။နာမည်ကြီးကုမ္မဏီကြီးတွေကပိုလောဘကြီးလို့ပိုမြတ်လို့အောင်မြင်လာတာ။စေတနာထားပြီးပစ္စည်းကောင်းထည့်ပေးရင်တသက်လုံးမကြီးပွားဘူးလုံးပါးပါးသွားမယ်။နာမည်ကြီးကုမ္မဏီကြီးတွေကအမြတ်ရဖို့ပဲအဓိကထားတာ။သူတို့ပစ္စည်းစားလို့တခုခုဖြစ်ရင်လဲတရားစွဲလို့မရနိုင်ဘူး။သူတို့ကခင်ဗျားတို့ထက်(lawyer)အင်အားတောင့်တယ်။(lawyer)ကောင်းကောင်းပိုက်ဆံပေးနိုင်မှ(USA)မှာတရားနိုင်တာ။လူ့အခွင့်အရေးတွေပါတွေဆိုပြီးတော့စာအုပ်ထဲမှာတော့အများကြီးရေးထားတယ်။လက်တွေ့အပြင်မှာတော့ပိုက်ဆံမရှိရင်ဘာမှလုပ်မရဘူး။ကျွန်တော်ကအမေရိကန်မှာနေလာတာနှစ်(၂၀)ကျော်ပြီ၊ဒီကောင်တွေအကြောင်းကောင်းကောင်းသိတယ်။ကိုယ့်လူမျိုးတွေဒုက္ခမရောက်အောင်အမုန်းခံပြောနေတာ။

ထပ်ပြောဦးမယ်အမေရိကန်မှာရောင်းနေတဲ့ငါးကြီးဆီတွေရဲ့တဝက်လောက်ကမာကျူရီသန့်စင်မထားဘူး။သန့်စင်ရမယ်လို့လဲ(FDA Regulation)မရှိဘူး။(FDA)ခွင့်ပြုတိုင်းတော့အကောင်းလို့ထင်မနေနဲ့(USA-FDA)ဆိုတာကချက်ချင်းမသေတဲ့အဆိပ်၊နောက်မှရောဂါဖြစ်မယ့်ပစ္စည်းဆိုရင်ခွင့်ပြုတယ်။ဥပမာ(trans fat)ကချက်ချင်းမသေဘူး၊နှောက်ကြာလာမှသေမှာဆိုတော့ကောင်းကောင်းခွင့်ပြုထားတယ်။စီးကရက်ကိုလဲ(FDA)ခွင့်ပြုတာပဲ။စီးကရက်သောက်ရင်လဲချက်ချင်းမသေဘူးလေ။နောက်တော့မှသေမှာဆိုတော့ခွင့်ပြုတယ်။(FDA)ခွင့်ပြုတိုင်းတော့အကောင်းမဟုတ်ဘူး။ကိုယ်တိုင်(Ingredients)လေ့လာမှရမယ်။(FDA)သာသိပ်ကောင်းရင်အမေရိကန်လူမျိုးတွေအရမ်းကျန်းမာကြမယ်။ဒါပေမဲ့ကမ္ဘာမှာရောဂါအထူဆုံးကအမေရိကန်ဖြစ်နေတယ်။အဲဒါ(FDA)အသုံးမကျလို့။ရှင်းရှင်းလေး။
အောက်ကပုံမှာပြထားတဲ့ကုမ္မဏီနှစ်ခုလောက်ကိုဦးတည်ပြောနေတာမဟုတ်ဘူး၊အရင်းရှင်အားလုံးကိုပြောနေတာ။အရင်းရှင်ဆိုတာကအရင်းရှင်ပါပဲ။
———-
Kelvin Albert Power
(Nutrition Specialist, Florida, USA)

———Summary and Recommendations————
Human beings evolved on a diet that was balanced in the omega-6 and omega-3 essential fatty acids.
A high omega-6 fatty acid intake and a high omega-6/omega-3 ratio are associated with weight gain in both animal and human studies, whereas a high omega-3 fatty acid intake decreases the risk for weight gain. Lowering the LA/ALA ratio in animals prevents overweight and obesity.
Omega-6/omega-3 fatty acids compete for their biosynthetic enzymes and because they have distinct physiological and metabolic properties, their balanced omega-6/omega-3 ratio is a critical factor for health throughout the life cycle.
Adipose tissue is the main peripheral target organ handling fatty acids, and AA is required for adipocyte differentiation (adipogenesis). The increased LA and AA content of foods has been accompanied by a significant increase in the AA/EPA + DHA ratio within adipose tissue, leading to increased production in AA metabolites, PGI2 which stimulates white adipogenesis and PGF2α which inhibits the browning process, whereas increased consumption of EPA and DHA leads to adipose tissue homeostasis through adipose tissue loss and increased mitochondrial biogenesis.
High omega-6 fatty acid intake leads to hyperactivity of endocannabinoid system, whereas omega-3 fatty acids lead to normal homeostasis (decrease hyperactivity).
High omega-6 fatty acids increase leptin resistance and insulin resistance, whereas omega-3 fatty acids lead to homeostasis and weight loss.
Because a high omega-6/omega-3 ratio is associated with overweight/obesity, whereas a balanced ratio decreases obesity and weight gain, it is essential that every effort is made to decrease the omega-6 fatty acids in the diet, while increasing the omega-3 fatty acid intake. This can be accomplished by (1) changing dietary vegetable oils high in omega-6 fatty acids (corn oil, sunflower, safflower, cottonseed, and soybean oils) to oils high in omega-3s (flax, perilla, chia, rapeseed), and high in monounsaturated oils such as olive oil, macadamia nut oil, hazelnut oil, or the new high monounsaturated sunflower oil; and (2) increasing fish intake to 2–3 times per week, while decreasing meat intake.
In clinical investigations and intervention trials it is essential that the background diet is precisely defined in terms of the omega-6 and omega-3 fatty acid content. Because the final concentrations of omega-6 and omega-3 fatty acids are determined by both dietary intake and endogenous metabolism, it is essential that in all clinical investigations and intervention trials the omega-6 and omega-3 fatty acids are precisely determined in the red blood cell membrane phospholipids. In severe obesity drugs and bariatric surgery have been part of treatment.
The risk allele rs 1421085 T to C SNV in intron 1 and 2 in the FTO gene functioned similarly to AA metabolites, PGI2 and PGF2a increasing proliferation of white adipose tissue and decreasing its browning respectively, whereas the knockdown of IRX3 and IRX5 genes functioned similarly to omega-3 fatty acid metabolites increasing the browning of white adipose tissue, mitochondrial biogenesis, and thermogenesis. Therefore, further research should include studies on the effects of omega-3 fatty acids in blocking the effects of the risk allele (rs 1421085), which appears to be responsible for the association between the first intron of FTO gene and obesity in humans.
In the future studies on genetic variants from GWAS will provide opportunities to precisely treat and prevent obesity by both nutritional and pharmaceutical interventions.
Obesity is a preventable disease that can be treated through proper diet and exercise. A balanced omega-6/omega-3 ratio 1–2/1 is one of the most important dietary factors in the prevention of obesity, along with physical activity. A lower omega-6/omega-3 ratio should be considered in the management of obesity.
————-
References
1. Simopoulos A.P. Evolutionary aspects of diet and essential fatty acids. In: Hamazaki T., Okuyama H., editors. Fatty Acids and Lipids—New Findings. Volume 88. Karger; Basel, Switzerland: 2001. pp. 18–27. [Google Scholar]
2. Kang J.X. The importance of omega-6/omega-3 fatty acid ratio in cell function. The gene transfer of omega-3 fatty acid desaturase. In: Simopoulos A.P., Cleland L.G., editors. Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence. Volume 92. Karger; Basel, Switzerland: 2003. pp. 23–36. [PubMed] [Google Scholar]
3. Simopoulos A.P. The importance of the omega-6/omega-3 Fatty Acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008;233:674–688. doi: 10.3181/0711-MR-311. [PubMed] [CrossRef] [Google Scholar]
4. Simopoulos A.P. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease. Nutrients. 2013;5:2901–2923. doi: 10.3390/nu5082901. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Donahue S.M., Rifas-Shiman S.L., Gold D.R., Jouni Z.E., Gillman M.W., Oken E. Prenatal fatty acid status and child adiposity at age 3 years: Results from a US pregnancy cohort. Am. J. Clin. Nutr. 2011;93:780–788. doi: 10.3945/ajcn.110.005801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6. Kromhout D., de Goede J. Update on cardiometabolic health effects of ω-3 fatty acids. Curr. Opin. Lipidol. 2014;25:85–90. doi: 10.1097/MOL.0000000000000041. [PubMed] [CrossRef] [Google Scholar]
7. Kromann N., Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med. Scand. 1980;208:401–406. doi: 10.1111/j.0954-6820.1980.tb01221.x. [PubMed] [CrossRef] [Google Scholar]
8. Adler A.I., Boyko E.J., Schraer C.D., Murphy N.J. Lower prevalence of impaired glucose tolerance and diabetes associated with daily seal oil or salmon consumption among Alaska Natives. Diabetes Care. 1994;17:1498–1501. doi: 10.2337/diacare.17.12.1498. [PubMed] [CrossRef] [Google Scholar]
9. Schraer C.D., Risica P.M., Ebbesson S.O., Go O.T., Howard B.V., Mayer A.M. Low fasting insulin levels in Eskimos compared to American Indians: are Eskimos less insulin resistant? Int. J. Circumpolar Health. 1999;58:272–280. [PubMed] [Google Scholar]
10. Nettleton J.A., Katz R. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes: A review. J. Am. Diet. Assoc. 2005;105:428–440. doi: 10.1016/j.jada.2004.11.029. [PubMed] [CrossRef] [Google Scholar]
11. Mozaffarian D., Rimm E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA. 2006;296:1885–1899. doi: 10.1001/jama.296.15.1885. [PubMed] [CrossRef] [Google Scholar]
12. Birch E.E., Hoffman D.R., Castañeda Y.S., Fawcett S.L., Birch D.G., Uauy R.D. A randomized controlled trial of long-chain polyunsaturated fatty acid supplementation of formula in term infants after weaning at 6 wk of age. Am. J. Clin. Nutr. 2002;75:570–580. [PubMed] [Google Scholar]
13. Guesnet P., Pugo-Gunsam P., Maurage C., Pinault M., Giraudeau B., Alessandri J.M., Durand G., Antoine J.M., Couet C. Blood lipid concenttrations of docosahexaenoic and arachidonic acids at birth determine their relative postnatal changes in term infants fed breast milk or formula. Am. J. Clin. Nutr. 1999;70:292–298. [PubMed] [Google Scholar]
14. Couet C., Delarue J., Ritz P., Antoine J.M., Lamisse F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. Relat. Metab. Disord. 1997;21:637–643. doi: 10.1038/sj.ijo.0800451. [PubMed] [CrossRef] [Google Scholar]
15. Fontani G., Corradeschi F., Felici A., Alfatti F., Bugarini R., Fiaschi A.I., Cerretani D., Montorfano G., Rizzo A.M., Berra B. Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with omega-3 polyunsaturated fatty acids. Eur. J. Clin. Investig. 2005;35:499–507. doi: 10.1111/j.1365-2362.2005.01540.x. [PubMed] [CrossRef] [Google Scholar]
16. Hill A.M., Buckley J.D., Murphy K.J., Howe P.R. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am. J. Clin. Nutr. 2007;85:1267–1274. [PubMed] [Google Scholar]
17. Belury M.A., Mahon A., Banni S. The conjugated linoleic acid (CLA) isomer, t10c12-CLA, is inversely associated with changes in body weight and serum leptin in subjects with type 2 diabetes mellitus. J. Nutr. 2003;133:257S–260S. [PubMed] [Google Scholar]
18. Chan D.C., Watts G.F., Nguyen M.N., Barrett P.H. Factorial study of the effect of n-3 fatty acid supplementation and atorvastatin on the kinetics of HDL apolipoproteins A-I and A-II in men with abdominal obesity. Am. J. Clin. Nutr. 2006;84:37–43. [PubMed] [Google Scholar]
19. Simopoulos A.P. The Impact of the Bellagio Report on Healthy Agriculture, Healthy Nutrition, Healthy People: Scientific and Policy Aspects and the International Network of Centers for Genetics, Nutrition and Fitness for Health. J. Nutrigenet. Nutrigenom. 2015;7:189–209. doi: 10.1159/000375495. [PubMed] [CrossRef] [Google Scholar]
20. Simopoulos A.P. ω-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991;54:438–463. [PubMed] [Google Scholar]
21. De Gomez Dumm I.N.T., Brenner R.R. Oxidative desaturation of alphalinolenic, linoleic, and stearic acids by human liver microsomes. Lipids. 1975;10:315–317. doi: 10.1007/BF02532451. [PubMed] [CrossRef] [Google Scholar]
22. Emken E.A., Adlof R.O., Rakoff H., Rohwedder W.K. Metabolism of deuterium-labeled linolenic, linoleic, oleic, stearic and palmitic acid in human subjects. In: Baillie T.A., Jones J.R., editors. Synthesis and Application of Isotopically Labeled Compounds 1988. Elsevier Science Publishers; Amsterdam, The Netherlands: 1989. pp. 713–716. [Google Scholar]
23. Hague T.A., Christoffersen B.O. Effect of dietary fats on arachidonic acid and eicosapentaenoic acid biosynthesis and conversion to C22 fatty acids in isolated liver cells. Biochim. Biophys. Acta. 1984;796:205–217. [PubMed] [Google Scholar]
24. Hague T.A., Christoffersen B.O. Evidence for peroxisomal retroconversion of adrenic acid (22, 4n6) and docosahexaenoic acid (22, 6n3) in isolated liver cells. Biochim. Biophys. Acta. 1986;875:165–173.[PubMed] [Google Scholar]
25. Indu M., Ghafoorunissa P. N-3 fatty acids in Indian diets—Comparison of the effects of precursor (alpha-linolenic acid) vs. product (long chain n-3 polyunsaturated fatty acids) Nutr. Res. 1992;12:569–582.[Google Scholar]
26. Ameur A., Enroth S., Johansson A., Zaboli G., Igl W., Johansson A.C., Rivas M.A., Daly M.J., Schmitz G., Hicks A.A., et al. Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain ω-3 and ω-6 Fatty Acids. Am. J. Hum. Genet. 2012;90:809–820. [PMC free article] [PubMed] [Google Scholar]
27. Sergeant S., Hugenschmidt C.E., Rudock M.E., Ziegler J.T., Ivester P., Ainsworth H.C., Vaidya D., Case L.D., Langefeld C.D., Freedman B.I., et al. Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome. Br. J. Nutr. 2012;107:547–555. [PMC free article] [PubMed] [Google Scholar]
28. Mathias R.A., Sergeant S., Ruczinski I., Torgerson D.G., Hugenschmidt C.E., Kubala M., Vaidya D., Suktitipat B., Ziegler J.T., Ivester P., et al. The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet. 2011;12:50. [PMC free article] [PubMed] [Google Scholar]
29. Carlson S.E., Rhodes P.G., Ferguson M.G. Docosahexaenoic acid status of preterm infants at birth and following feeding with human milk or formula. Am. J. Clin. Nutr. 1986;44:798–804. [PubMed] [Google Scholar]
30. Singer P., Jaeger W., Voigt S., Theil H. Defective desaturation and elongation of n-6 and n-3 fatty acids in hypertensive patients. Prostaglandins Leukot. Med. 1984;15:159–165. doi: 10.1016/0262-1746(84)90173-2. [PubMed] [CrossRef] [Google Scholar]
31. Honigmann G., Schimke E., Beitz J., Mest H.J., Schliack V. Influence of a diet rich in linolenic acid on lipids, thrombocyte aggregation and prostaglandins in type I (insulin-dependent) diabetes. Diabetologia. 1982;23:175. [Google Scholar]
32. Simopoulos A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999;70(Suppl.):560S–569S. [PubMed] [Google Scholar]
33. Simopoulos A.P. The importance of the ω-6/ω-3 Balance in Health and Disease: Evolutionary Aspects of Diet. In: Simopoulos A.P., editor. Healthy Agriculture, Healthy Nutrition, Healthy People. Volume 102. Karger; Basel, Switzerland: 2011. pp. 10–21. [PubMed] [Google Scholar]
34. Eaton S.B., Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N. Engl. J. Med. 1985;312:283–289. doi: 10.1056/NEJM198501313120505. [PubMed] [CrossRef] [Google Scholar]
35. Simopoulos A.P. Overview of evolutionary aspects of ω3 fatty acids in the diet. In: Simopoulos A.P., editor. The Return of ω-3 Fatty Acids into the Food Supply. I. Land-Based Animal Food Products and Their Health Effects. Volume 83. Karger; Basel, Switzerland: 1998. pp. 1–11. [Google Scholar]
36. Crawford M.A. Fatty acid ratios in free-living and domestic animals. Lancet. 1968;1:1329–1333. doi: 10.1016/S0140-6736(68)92034-5. [PubMed] [CrossRef] [Google Scholar]
37. Wo C.K., Draper H.H. Vitamin E status of Alaskan Eskimos. Am. J. Clin. Nutr. 1975;28:808–813.[PubMed] [Google Scholar]
38. Crawford M.A., Gale M.M., Woodford M.H. Linoleic acid and linoleic acid elongation products in muscle tissue of Syncerus caffer and other ruminant species. Biochem. J. 1969;115:25–27. doi: 10.1042/bj1150025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
39. Raper N.R., Cronin F.J., Exler J. ω-3 fatty acid content of the US food supply. J. Am. College Nutr. 1992;11:304. doi: 10.1080/07315724.1992.10718231. [PubMed] [CrossRef] [Google Scholar]
40. Simopoulos A.P., Salem N., Jr. Purslane: A terrestrial source of ω-3 fatty acids. N. Engl. J. Med. 1986;315:833. [PubMed] [Google Scholar]
41. Van Vliet T., Katan M.B. Lower ratio of n-3 to n-6 fatty acids in cultured than in wild fish. Am. J. Clin. Nutr. 1990;51:l–2. [PubMed] [Google Scholar]
42. Simopoulos A.P., Salem N., Jr. Egg yolk as a source of long-chain polyunsaturated fatty acids in infant feeding. Am. J. Clin. Nutr. 1992;55:411–414. [PubMed] [Google Scholar]
43. Simopoulos A.P., Norman H.A., Gillapsy J.E., Duke J.A. Common purslane: A source of ω-3 fatty acids and antioxidants. J. Am. Coll. Nutr. 1992;11:374–382. doi: 10.1080/07315724.1992.10718240.[PubMed] [CrossRef] [Google Scholar]
44. Simopoulos A.P. Nutrition and Fitness. JAMA. 1989;261:2862–2863. doi: 10.1001/jama.1989.03420190138045. [PubMed] [CrossRef] [Google Scholar]
45. Simopoulos A.P., Salem N., Jr. N-3 Fatty acid in eggs from range-fed Greek chickens. N. Engl. J. Med. 1989;321:1412. [PubMed] [Google Scholar]
46. Simopoulos A.P., Norman H.A., Gillapsy J.E. Purlsane in human nutrition and its potential for world agriculture. In: Simopoulos A.P., editor. Plants in Human Nutrition. Volume 77. Karger; Basel, Switzerland: 1995. pp. 47–74. [PubMed] [Google Scholar]
47. Simopoulos A.P. Trans-fatty acids. In: Spiller G.A., editor. Handbook of Lipids in Human Nutrition.CRC Press; Boca Raton, FL, USA: 1995. pp. 91–99. [Google Scholar]
48. Dupont J., White P.J., Feldman E.B. Saturated and hydrogenated fats in food in relation to health. J. Am. Coll. Nutr. 1991;10:577–592. doi: 10.1080/07315724.1991.10718180. [PubMed] [CrossRef] [Google Scholar]
49. Litin L., Sacks F. Trans-fatty acid content of common foods. N. Engl. J. Med. 1993;329:1969–1970. doi: 10.1056/NEJM199312233292621. [PubMed] [CrossRef] [Google Scholar]
50. Guil J.L., Torija M.E., Gimenez J.J., Rodríguez I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A. 1996;719:229–235. doi: 10.1016/0021-9673(95)00414-9.[PubMed] [CrossRef] [Google Scholar]
51. Cordain L., Martin C., Florant G., Watkins B.A. The fatty acid composition of muscle, brain, marrow and adipose tissue in elk: Evolutionary implications for human dietary lipid requirements. World Rev. Nutr. Diet. 1998;83:225–226. [Google Scholar]
52. Sinclair A.J., Slattery W.J., O’Dea K. The analysis of polyunsaturated fatty acids in meat by capillary gas-liquid chromatography. J. Food Sci. Agri. 1982;33:771–776. doi: 10.1002/jsfa.2740330814. [CrossRef] [Google Scholar]
53. Simopoulos A.P. The role of fatty acids in gene expression: Health implications. Ann. Nutr. Metab. 1996;40:303–311. doi: 10.1159/000177929. [PubMed] [CrossRef] [Google Scholar]
54. Elton S. Environments, Adaptation, and Evolutionary Medicine: Should We Be Eating a Stone Age Diet? In: Elton S., O’Higgins P., editors. Medicine and Evolution: Current Applications, Future Prospects.CRC Press; Boca Raton, FL, USA: 2008. pp. 9–34. [Google Scholar]
55. Eaton S.B., Konner M., Shostak M. Stone agers in the fast lane: Chronic degenerative diseases in evolutionary perspective. Am. J. Med. 1988;84:739–749. doi: 10.1016/0002-9343(88)90113-1. [PubMed] [CrossRef] [Google Scholar]
56. Kuipers R.S., Luxwolda M.F., Dijck-Brouwer D.A., Eaton S.B., Crawford M.A., Cordain L., Muskiet F.A. Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet. Br. J. Nutr. 2010;104:1666–1687. doi: 10.1017/S0007114510002679. [PubMed] [CrossRef] [Google Scholar]
57. Guil-Guerrero J.L., Tikhonov A., Rodríguez-García I., Protopopov A., Grigoriev S., Ramos-Bueno R.P. The fat from frozen mammals reveals sources of essential fatty acids suitable for Palaeolithic and Neolithic humans. PLoS ONE. 2014;9:128 [PMC free article] [PubMed] [Google Scholar]
58. Eaton S.B., Eaton S.B., III, Sinclair A.J., Cordain L., Mann N.J. Dietary intake of long-chain polyunsaturated fatty acids during the Paleolithic. In: Simopoulos A.P., editor. The Return of w-3 Fatty Acids into the Food Supply. I. Land-Based Animal Food Products and Their Health Effects. Volume 83. Karger; Basel, Switzerland: 1998. pp. 12–23. [Google Scholar]
59. Simopoulos A.P. Importance of the ratio of ω-6/ω-3 essential fatty acids: Evolutionary aspects. In: Simopoulos A.P., Cleland L.G., editors. Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence. Volume 92. Karger; Basel, Switzerland: 2003. pp. 1–22. [PubMed] [Google Scholar]
60. Amri E.Z., Ailhaud G., Grimaldi P.A. Fatty acids as signal transducing molecules: Involvement in the differentiation of preadipose to adipose cells. J. Lipid Res. 1994;35:930–937. [PubMed] [Google Scholar]
61. Jump D.B., Clarke S.D., Thelen A., Liimatta M. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 1994;35:1076–1084. [PubMed] [Google Scholar]
62. Clarke S.D., Jump D. Polyunsaturated fatty acids regulate lipogenic and peroxisomal gene expression by independent mechanisms. Prostaglandins Leukot. Essent. Fatty Acids. 1997;57:65–69. doi: 10.1016/S0952-3278(97)90494-4. [PubMed] [CrossRef] [Google Scholar]
63. Schwinkendorf D.R., Tsatsos N.G., Gosnell B.A., Mashek D.G. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int. J. Obes. 2011;35:336–344. doi: 10.1038/ijo.2010.159. [PubMed] [CrossRef] [Google Scholar]
64. James M.J., Gibson R.A., Cleland L.G. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 2000;71:343S–348S. [PubMed] [Google Scholar]
65. Gaillard D., Negrel R., Lagarde M., Ailhaud G. Requirement and role of arachidonic acid in the differentiation of preadipose cells. Biochem. J. 1989;257:389–397. doi: 10.1042/bj2570389.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
66. Corey E.J., Shih C., Cashman J.R. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. Natl. Acad. Sci. USA. 1983;80:3581–3584. doi: 10.1073/pnas.80.12.3581.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
67. Massaro M., Habib A., Lubrano L., Del Turco S., Lazzerini G., Bourcier T., Weksler B.B., De Caterina R. The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKC epsilon inhibition. Proc. Natl. Acad. Sci. USA. 2006;103:15184–15189. doi: 10.1073/pnas.0510086103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
68. Ringbom T., Huss U., Stenholm A., Flock S., Skattebol L., Perera P., Bohlin L. Cox-2 inhibitory effects of naturally occurring and modified fatty acids. J. Nat. Prod. 2001;64:745–749. doi: 10.1021/np000620d.[PubMed] [CrossRef] [Google Scholar]
69. Mirnikjoo B., Brown S.E., Kim H.F., Marangell L.B., Sweatt J.D., Weeber E.J. Protein kinase inhibition by omega-3 fatty acids. J. Biol. Chem. 2001;276:10888–10896. doi: 10.1074/jbc.M008150200.[PubMed] [CrossRef] [Google Scholar]
70. Hennig B., Watkins B.A. Linoleic acid and linolenic acid: Effect on permeability properties of cultured endothelial cell monolayers. Am. J. Clin. Nutr. 1989;49:301–305. [PubMed] [Google Scholar]
71. Ukropec J., Reseland J.E., Gasperikova D., Demcakova E., Madsen L., Berge R.K., Rustan A.C., Klimes I., Drevon C.A., Sebokova E. The hypotriglyceridemic effect of dietary n-3 FA is associated with increased beta-oxidation and reduced leptin expression. Lipids. 2003;38:1023–1029. doi: 10.1007/s11745-006-1156-z. [PubMed] [CrossRef] [Google Scholar]
72. Lepperdinger G. Inflammation and mesenchymal stem cell aging. Curr. Opin. Immunol. 2011;23:518–524. doi: 10.1016/j.coi.2011.05.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73. Massiera F., Barbry P., Guesnet P., Joly A., Luquet S., Moreilhon-Brest C., Mohsen-Kanson T., Amri E.Z., Ailhaud G. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J. Lipid Res. 2010;51:2352–2561. doi: 10.1194/jlr.M006866. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74. Pisani D.F., Amri E.Z., Ailhaud G. Disequilibrium of polyunsaturated fatty acids status and its dual effect in modulating adipose tissue development and functions. OCL. 2015;22:D405. doi: 10.1051/ocl/2015003. [CrossRef] [Google Scholar]
75. Baillie R.A., Takada R., Nakamura M., Clarke S.D. Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: A mechanism for decreased body fat deposition. Prostaglandins Leukot. Essent. Fatty Acids. 1999;60:351–356. doi: 10.1016/S0952-3278(99)80011-8. [PubMed] [CrossRef] [Google Scholar]
76. Phillips C.M., Goumidi L., Bertrais S., Field M.R., Ordovas J.M., Cupples L.A., Defoort C., Lovegrove J.A., Drevon C.A., Blaak E.E., et al. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults. J. Nutr. 2010;140:238–244.[PubMed] [Google Scholar]
77. Cheng L., Yu Y., Zhang Q., Szabo A., Wang H., Huang X.F. Arachidonic acid impairs hypothalamic leptin signaling and hepatic energy homeostasis in mice. Mol. Cell. Endocrinol. 2015;5, 412:12–18. doi: 10.1016/j.mce.2015.04.025. [PubMed] [CrossRef] [Google Scholar]
78. Perez-Matute P., Perez-Echarri N., Martinez J.A., Marti A., Moreno-Aliaga M.J. Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: Role of apoptosis, adiponectin and tumour necrosis factor-alpha. Br. J. Nutr. 2007;97:389–398. doi: 10.1017/S0007114507207627.[PubMed] [CrossRef] [Google Scholar]
79. Hassanali Z., Ametaj B.N., Field C.J., Proctor S.D., Vine D.F. Dietary supplementation of n-3 PUFA reduces weight gain and improves postprandial lipaemia and the associated inflammatory response in the obese JCR: LA-cp rat. Diabetes Obes. Metab. 2010;12:139–147. doi: 10.1111/j.1463-1326.2009.01130.x.[PubMed] [CrossRef] [Google Scholar]
80. Alvheim A.R., Torstensen B.E., Lin Y.H., Lillefosse H.H., Lock E.J., Madsen L., Frøyland L., Hibbeln J.R., Malde M.K. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. Lipids. 2014;49:59–69. doi: 10.1007/s11745-013-3842-y.[PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Banni S., Di Marzo V. Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood. Mol. Nutr. Food Res. 2010;54:82–92. doi: 10.1002/mnfr.200900516. [PubMed] [CrossRef] [Google Scholar]
82. Matias I., Di Marzo V. Endocannabinoids and the control of energy balance. Trends Endocrinol. Metab. 2007;18:27–37. doi: 10.1016/j.tem.2006.11.006. [PubMed] [CrossRef] [Google Scholar]
83. Buckley J.D., Howe P.R. Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids. Obes. Rev. 2009;10:648–659. doi: 10.1111/j.1467-789X.2009.00584.x. [PubMed] [CrossRef] [Google Scholar]
84. Hainault I., Carolotti M., Hajduch E., Guichard C., Lavau M. Fish oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin resistance in rats. Ann. N. Y. Acad. Sci. 1993;683:98–101. doi: 10.1111/j.1749-6632.1993.tb35696.x. [PubMed] [CrossRef] [Google Scholar]
85. Belzung F., Raclot T., Groscolas R. Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am. J. Physiol. 1993;264:R1111–R1118. [PubMed] [Google Scholar]
86. Parrish C.C., Pathy D.A., Angel A. Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism. 1990;39:217–219. doi: 10.1016/0026-0495(90)90038-E. [PubMed] [CrossRef] [Google Scholar]
87. Ruzickova J., Rossmeisl M., Prazak T., Flachs P., Sponarova J., Veck M., Tvrzicka E., Bryhn M., Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185. doi: 10.1007/s11745-004-1345-9. [PubMed] [CrossRef] [Google Scholar]
88. Nuernberg K., Breier B.H., Jayasinghe S.N., Bergmann H., Thompson N., Nuernberg G., Dannenberger D., Schneider F., Renne U., Langhammer M., et al. Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes. Nutr. Metab. 2011;8:56. [PMC free article] [PubMed] [Google Scholar]
89. Kang J.X., Wang J., Wu L., Kang Z.B. Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature. 2004;427:504. doi: 10.1038/427504a. [PubMed] [CrossRef] [Google Scholar]
90. Jump D.B., Clarke S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr. 1999;19:63–90. doi: 10.1146/annurev.nutr.19.1.63. [PubMed] [CrossRef] [Google Scholar]
91. Jump D.B. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol. 2002;13:155–164. doi: 10.1097/00041433-200204000-00007. [PubMed] [CrossRef] [Google Scholar]
92. Suzukawa M., Abbey M., Howe P.R., Nestel P.J. Effects of fish oil fatty acids on low-density lipoprotein size, oxidizability, and uptake by macrophages. J. Lipid Res. 1995;36:473–484. [PubMed] [Google Scholar]
93. Li J., Li F.R., Wei D., Jia W., Kang J.X., Stefanovic-Racic M., Dai Y., Zhao A.Z. Endogenous ω-3 Polyunsaturated Fatty Acid Production Confers Resistance to Obesity, Dyslipidemia, and Diabetes in Mice. Mol. Endocrinol. 2014;28:1316–1328. doi: 10.1210/me.2014-1011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. Kabir M., Skurnik G., Naour N., Pechtner V., Meugnier E., Rome S., Quignard-Boulangé A., Vidal H., Slama G., Clément K., et al. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: A randomized controlled study. Am. J. Clin. Nutr. 2007;86:1670–1679. [PubMed] [Google Scholar]
95. Thorsdottir I., Tomasson H., Gunnarsdottir I., Gisladottir E., Kiely M., Parra M.D., Bandarra N.M., Schaafsma G., Martinéz J.A. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int. J. Obes. 2007;31:1560–1566. doi: 10.1038/sj.ijo.0803643. [PubMed] [CrossRef] [Google Scholar]
96. Parra D., Ramel A., Bandarra N., Kiely M., Martinez J.A., Thorsdottir I. A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008;51:676–680. doi: 10.1016/j.appet.2008.06.003. [PubMed] [CrossRef] [Google Scholar]
97. Krebs J.D., Browning L.M., McLean N.K., Rothwell J.L., Mishra G.D., Moore C.S., Jebb S.A. Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Int. J. Obes. 2006;30:1535–1544. doi: 10.1038/sj.ijo.0803309. [PubMed] [CrossRef] [Google Scholar]
98. Kunesova M., Braunerová R., Hlavatý P., Tvrzická E., Stanková B., Skrha J., Hilgertová J., Hill M., Kopecký J., Wagenknecht M., et al. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol. Res. 2006;55:63–72. [PubMed] [Google Scholar]
99. Simopoulos A.P. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp. Biol. Med. 2010;235:785–795. doi: 10.1258/ebm.2010.009298. [PubMed] [CrossRef] [Google Scholar]
100. Wang L., Manson J.E., Rautiainen S., Gaziano J.M., Buring J.E., Tsai M.Y., Sesso H.D. A prospective study of erythrocyte polyunsaturated fatty acid, weight gain, and risk of becoming overweight or obese in middle aged and older women. Eur. J. Nutr. 2015 doi: 10.1007/s00394-015-0889-y. [PMC free article][PubMed] [CrossRef] [Google Scholar]
101. Claussnitzer M., Dankel S.N., Kim K.H., Quon G., Meuleman W., Haugen C., Glunk V., Sousa I.S., Beaudry J.L., Puviindran V., et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015;373:895–907. [PMC free article] [PubMed] [Google Scholar]
102. Savva S.C., Chadjigeorgiou C., Hatzis C., Kyriakakis M., Tsimbinos G., Tornaritis M., Kafatos A. Association of adipose tissue arachidonic acid content with BMI and overweight status in children from Cyprus and Crete. Br. J. Nutr. 2004;91:643–649. doi: 10.1079/BJN20031084. [PubMed] [CrossRef] [Google Scholar]
103. Jensen C.L., Prager T.C., Fraley J.K., Chen H., Anderson R.E., Heird W.C. Effect of dietary linoleic/alpha-linolenic acid ratio on growth and visual function of term infants. J. Pediatr. 1997;131:200–209. doi: 10.1016/S0022-3476(97)70154-9. [PubMed] [CrossRef] [Google Scholar]
104. Ahima R.S., Antwi D.A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. N. Am. 2008;37:811–823. doi: 10.1016/j.ecl.2008.08.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
105. Artmann A., Petersen G., Hellgren L., Boberg J., Skonberg C., Nellemann C., Hansen S.H., Hansen H.S. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim. Biophys. Acta. 2008;1781:200–212. doi: 10.1016/j.bbalip.2008.01.006.[PubMed] [CrossRef] [Google Scholar]
106. Yoshida R., Ohkuri T., Jyotaki M., Yasuo T., Horio N., Yasumatsu K., Sanematsu K., Shigemura N., Yamamoto T., Margolskee R.F., et al. Endocannabinoids selectively enhance sweet taste. Proc. Natl. Acad. Sci. USA. 2010;107:935–939. doi: 10.1073/pnas.0912048107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
107. Van Gaal L., Pi-Sunyer X., Despres J.P., McCarthy C., Scheen A. Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: Pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care. 2008;31:S229–S240. doi: 10.2337/dc08-s258. [PubMed] [CrossRef] [Google Scholar]
108. Christensen R., Kristensen P.K., Bartels E.M., Bliddal H., Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007;370:1706–1713. doi: 10.1016/S0140-6736(07)61721-8. [PubMed] [CrossRef] [Google Scholar]
109. Anversa P, Hiler B, Ricci R, Guideri G, Olivetti G. Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J Am Coll Cardiol 8: 1441–1448, 1986. doi:10.1016/S0735-1097(86)80321-7. [PubMed] [CrossRef] [Google Scholar]
110. Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6-fatty acids in the United States during the 20th century. Am J Clin Nutr 93: 950–962, 2011. doi:10.3945/ajcn.110.006643. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
111. Bray MS, Ratcliffe WF, Grenett MH, Brewer RA, Gamble KL, Young ME. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes 37: 843–852, 2013. doi:10.1038/ijo.2012.137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
112. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2: 355–374, 2010. doi:10.3390/nu2030355. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
113. Das SK, Moriguti JC, McCrory MA, Saltzman E, Mosunic C, Greenberg AS, Roberts SB. An underfeeding study in healthy men and women provides further evidence of impaired regulation of energy expenditure in old age. J Nutr 131: 1833–1838, 2001. [PubMed] [Google Scholar]
114. Das UN. Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1: 420–439, 2006. doi:10.1002/biot.200600012. [PubMed] [CrossRef] [Google Scholar]
115. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, Yakoob MY, Chiuve SE, Dela Cruz L, Frazier-Wood AC, Fretts AM, Guallar E, Matsumoto C, Prem K, Tanaka T, Wu JH, Zhou X, Helmer C, Ingelsson E, Yuan JM, Barberger-Gateau P, Campos H, Chaves PH, Djoussé L, Giles GG, Gómez-Aracena J, Hodge AM, Hu FB, Jansson JH, Johansson I, Khaw KT, Koh WP, Lemaitre RN, Lind L, Luben RN, Rimm EB, Risérus U, Samieri C, Franks PW, Siscovick DS, Stampfer M, Steffen LM, Steffen BT, Tsai MY, van Dam RM, Voutilainen S, Willett WC, Woodward M, Mozaffarian D; Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Fatty Acids and Outcomes Research Consortium (FORCe) ω-3 Polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern Med 176: 1155–1166, 2016. doi:10.1001/jamainternmed.2016.2925. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
116. Flatt JP. Dietary fat, carbohydrate balance, and weight maintenance: effects of exercise. Am J Clin Nutr 45, Suppl: 296–306, 1987. [PubMed] [Google Scholar]
117. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69, Suppl 1: S4–S9, 2014. doi:10.1093/gerona/glu057. [PubMed] [CrossRef] [Google Scholar]
118. Gounder SS, Kannan S, Devadoss D, Miller CJ, Whitehead KJ, Odelberg SJ, Firpo MA, Paine R 3rd, Hoidal JR, Abel ED, Rajasekaran NS. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One 7: e45697, 2012. doi:10.1371/journal.pone.0045697. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
119. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ; American Heart Association Advocacy Coordinating Committee; Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Cardiopulmonary; Critical Care; Perioperative and Resuscitation; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease; Council on Cardiovascular Surgery and Anesthesia, and Interdisciplinary Council on Quality of Care and Outcomes Research . Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123: 933–944, 2011. doi:10.1161/CIR.0b013e31820a55f5. [PubMed] [CrossRef] [Google Scholar]
120. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G, Iwamoto Y, Sun Y, Savol AJ, Sager HB, Lavine KJ, Fishbein GA, Capen DE, Da Silva N, Miquerol L, Wakimoto H, Seidman CE, Seidman JG, Sadreyev RI, Naxerova K, Mitchell RN, Brown D, Libby P, Weissleder R, Swirski FK, Kohl P, Vinegoni C, Milan DJ, Ellinor PT, Nahrendorf M. Macrophages facilitate electrical conduction in the heart. Cell 169: 510–522.e20, 2017. doi:10.1016/j.cell.2017.03.050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
121. Imbesi M, Dzitoyeva S, Ng LW, Manev H. 5-Lipoxygenase and epigenetic DNA methylation in aging cultures of cerebellar granule cells. Neuroscience 164: 1531–1537, 2009. doi:10.1016/j.neuroscience.2009.09.039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
122. Kain V, Ingle KA, Colas RA, Dalli J, Prabhu SD, Serhan CN, Joshi M, Halade GV. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J Mol Cell Cardiol 84: 24–35, 2015. doi:10.1016/j.yjmcc.2015.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
123. Kumar MV, Moore RL, Scarpace PJ. Beta3-adrenergic regulation of leptin, food intake, and adiposity is impaired with age. Pflugers Arch 438: 681–688, 1999. [PubMed] [Google Scholar]
124. Lin J, Lopez EF, Jin Y, Van Remmen H, Bauch T, Han HC, Lindsey ML. Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol 43: 296–306, 2008. doi:10.1016/j.exger.2007.12.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, Sweterlitsch SE, Spinale FG. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res 66: 410–419, 2005. doi:10.1016/j.cardiores.2004.11.029. [PubMed] [CrossRef] [Google Scholar]
125. Lopez EF, Kabarowski JH, Ingle KA, Kain V, Barnes S, Crossman DK, Lindsey ML, Halade GV. Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction. Am J Physiol Heart Circ Physiol 308: H269–H280, 2015. doi:10.1152/ajpheart.00604.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
126. Merentie M, Lipponen JA, Hedman M, Hedman A, Hartikainen J, Huusko J, Lottonen-Raikaslehto L, Parviainen V, Laidinen S, Karjalainen PA, Ylä-Herttuala S. Mouse ECG findings in aging, with conduction system affecting drugs and in cardiac pathologies: Development and validation of ECG analysis algorithm in mice. Physiol Rep 3: 3, 2015. doi:10.14814/phy2.12639. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
127. Miller CJ, Gounder SS, Kannan S, Goutam K, Muthusamy VR, Firpo MA, Symons JD, Paine R 3rd, Hoidal JR, Rajasekaran NS. Disruption of Nrf2/ARE signaling impairs antioxidant mechanisms and promotes cell degradation pathways in aged skeletal muscle. Biochim Biophys Acta 1822: 1038–1050, 2012. doi:10.1016/j.bbadis.2012.02.007. [PubMed] [CrossRef] [Google Scholar]
128. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB; Writing Group Members; American Heart Association Statistics Committee; Stroke Statistics Subcommittee . Executive Summary: Heart Disease and Stroke Statistics–2016 update: a report from the American Heart Association. Circulation 133: 447–454, 2016. doi:10.1161/CIR.0000000000000366. [PubMed] [CrossRef] [Google Scholar]
129. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res 110: 1097–1108, 2012. doi:10.1161/CIRCRESAHA.111.246876. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
130. Pal S, Tyler JK. Epigenetics and aging. Sci Adv 2: e1600584, 2016. doi:10.1126/sciadv.1600584. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
131. Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6-polyunsaturated Fatty acids. J Nutr Metab 2012: 539426, 2012. doi:10.1155/2012/539426. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
132. Poljsak B. Suput D, Milisav. I. Achieving the balance between ros and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013: 956792, 2013. doi:10.1155/2013/956792. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133. Rådmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 32: 332–341, 2007. doi:10.1016/j.tibs.2007.06.002. [PubMed] [CrossRef] [Google Scholar]
134. Rosa EF, Silva AC, Ihara SS, Mora OA, Aboulafia J, Nouailhetas VL. Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging. J Appl Physiol 99: 1569–1575, 2005. doi:10.1152/japplphysiol.00417.2005. [PubMed] [CrossRef] [Google Scholar]
135. Schimpf R, Veltmann C, Papavassiliu T, Rudic B, Göksu T, Kuschyk J, Wolpert C, Antzelevitch C, Ebner A, Borggrefe M, Brandt C. Drug-induced QT-interval shortening following antiepileptic treatment with oral rufinamide. Heart Rhythm 9: 776–781, 2012. doi:10.1016/j.hrthm.2012.01.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
136. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25: 101–137, 2007. doi:10.1146/annurev.immunol.25.022106.141647. [PubMed] [CrossRef] [Google Scholar]
137. Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2: e895, 2007. doi:10.1371/journal.pone.0000895. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
138. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8: 128, 2016. doi:10.3390/nu8030128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
139. Valsesia A, Saris WH, Astrup A, Hager J, Masoodi M. Distinct lipid profiles predict improved glycemic control in obese, nondiabetic patients after a low-caloric diet intervention: the Diet, Obesity and Genes randomized trial. Am J Clin Nutr 104: 566–575, 2016. doi:10.3945/ajcn.116.137646. [PubMed] [CrossRef] [Google Scholar]
140. Vasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP, Listi F, Nuzzo D, Lio D, Caruso C. Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 128: 83–91, 2007. doi:10.1016/j.mad.2006.11.015. [PubMed] [CrossRef] [Google Scholar]
141. Vnotchenko SL, Aleksandrova GF, Mktrumova NA. [Indicators of the T- and B-systems of immunity in patients with diffuse toxic goiter]. Probl Endokrinol (Mosk) 29: 23–27, 1983. [PubMed] [Google Scholar]
142. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int 22: 1041–1050, 2009. doi:10.1111/j.1432-2277.2009.00927.x. [PubMed] [CrossRef] [Google Scholar]
143. Wu J, Xia S, Kalionis B, Wan W, Sun T. The role of oxidative stress and inflammation in cardiovascular aging. BioMed Res Int 2014: 615312, 2014. doi:10.1155/2014/615312. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
144. Zhang F, Hartnett S, Sample A, Schnack S, Li Y. High fat diet induced alterations of atrial electrical activities in mice. Am J Cardiovasc Dis 6: 1–9, 2016. [PMC free article] [PubMed] [Google Scholar]
Shopping Cart