PUFA(Polyunsaturated fatty acids)နှစ်မျိုး(OMEGA 3)နဲ့(Omega 6)

Source from Kelvin A. Power’s Facebook on August 12, 2019
PUFA(Polyunsaturated fatty acids)နှစ်မျိုးရှိတယ်။(OMEGA 3)နဲ့(Omega 6)ပါ။(OMEGA 3)ကရောဂါကာကွယ်ပေးတယ်။(Omega 6)ကတော့ရောဂါဖြစ်စေတယ်။အော်တိုအင်မြူးနဲ့ကင်ဆာရောဂါဟာကုလို့မရဘူးလို့ယုံကြည်ထားကြတယ်။ဒါပေမဲ့(Omega 3)တွေဖြစ်ကြတဲ့(EPA,DHA,ALA)သုံးမျိုးဟာ၊များများပေးရင်အော်တိုအင်မြူးနဲ့ကင်ဆာရောဂါနှစ်ခုလုံးကိုကုနိုင်တယ်။ဒါပေမဲ့ခက်တာက(PUFA)ထဲကအမျိုးအစားတခုဖြစ်နေလို့အသဲထဲမှာ
(metabolize)လုပ်ရင်ဒါမှမဟုတ်ဆဲလ်တွေမှာ(metabolize)လုပ်ရင်(lipid peroxidation)ဖြစ်ပြီးပျက်စီးသွားလို့သိပ်များများပေးရင် oxidative stress)ဖြစ်ပြီး(free radicals)တွေများလာလို့အန္တရာယ်ရှိတယ်။ဒါပေမဲ့မိမိရဲ့(antioxidant system)ကိုအရမ်းကောင်းနေအောင်လုပ်ထားနိုင်မယ်ဆိုရင်တော့ဒီ(Omega 3)များများပေးပြီး၊
အော်တိုအင်မြူးနဲ့ကင်ဆာရောဂါတွေကိုအမှန်တကယ်ကယ်တင်ကုသနိုင်မှာပါ။
———
ဒီဆက်စပ်မှုဟာသိပ်ကိုအရေးကြီးပြီးတန်ဖိုးမဖြတ်နိုင်တဲ့ထူးခြားတဲ့အချက်ပါ။
———–
(၁)(EPA,DHA,ALA)သုံးမျိုးဟာကင်ဆာပျောက်ကင်းနိုင်တယ်ဆိုတာသုသေသနရှိပါတယ်။ဒါပေမဲ့တိရိစ္ဆာန်တွေမှာပါ။
————-
(၂)(EPA,DHA,ALA) (metabolize)လုပ်ရင်(lipid peroxidation)ဖြစ်ပြီးပျက်စီးသွားလို့သိပ်များများပေးရင် (oxidative stress)ဖြစ်ပြီး(free radicals)တွေများလာလို့အန္တရာယ်ရှိတယ်ဆိုတာလူမှာသုသေသနတွေရှိတယ်။ဒါပေမဲ့တချို့တိရိစ္ဆာန်တွေမှာ(oxidative stress)မဖြစ်ဘူး။
—————
(၃)တချို့တိရိစ္ဆာန်တွေမှာ(EPA,DHA,ALA)တွေဟာ(metabolize)လုပ်ရင်(lipid peroxidation)ဖြစ်ပြီးပျက်စီးမသွားနိုင်ပဲ(oxidative stress)ဖြစ်ပြီး(free radicals)တွေများမလာနိုင်ဘူး။ဘာကြောင့်လဲဆိုတော့အဲဒီတိရိစ္ဆာန်တွေရဲ့(antioxidant system)ကအရမ်းကိုကောင်းနေလို့ပါပဲ။ဘာလို့ကောင်းနေလဲဆိုတော့ကျွန်တော်တို့လူခန္ဓာကိုယ်ကမထုတ်ပေးနိုင်တဲ့ဗီတာမင်တွေ(antioxidant)တွေကိုသူတို့ခန္ဓာကိုယ်တွေကအလိုလိုထုတ်ပေးနိုင်လို့ပါပဲ။
————–
အဲဒီဗီတာမင်တွေ(antioxidant)တွေကဘာတွေလဲဆိုတာနောက်တော့သိလာရမှာပါ။
———
ဒီကနေရလိုက်တဲ့တန်ဖိုးမဖြတ်နိုင်တဲ့အဖြေကတော့ကျွန်တော်တို့တွေရဲ့(antioxidant system)ကိုအရမ်းကောင်းနေအောင်ပြုပြင်လိုက်ပြီး။(Omega 3)တွေများများပေးပြီး၊ရောဂါပေါင်းစုံကိုတိုက်လို့ရတယ်ဆိုတာပါပဲ။
———–
Kelvin Albert Power
(Nutrition Specialist, Florida, USA)
——–References——–
1. Dyerberg J., Bang H.O., Hjorne N. Fatty Acid composition of the plasma lipids in Greenland Eskimos. Am. J. Clin. Nutr. 1975;28:958–966. doi: 10.1093/ajcn/28.9.958. [PubMed] [CrossRef] [Google Scholar]
2. Bang H.O., Dyerberg M.D., Sinclair H.M. The composition of the Eskimo western food in north. Am. J. Clin. Nutr. 1980;33:2657–2661. doi: 10.1093/ajcn/33.12.2657. [PubMed] [CrossRef] [Google Scholar]
3. Watanabe Y., Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: Present, past and future. Expert Rev. Clin. Pharm. 2017;10:865–873. doi: 10.1080/17512433.2017.1333902. [PubMed] [CrossRef] [Google Scholar]
4. Simopoulos A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients. 2016;8:128. doi: 10.3390/nu8030128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Fang X., Ge K., Song C., Ge Y., Zhang J. Biochemical and Biophysical Research Communications Effects of n-3PUFAs on autophagy and inflammation of hypothalamus and body weight in mice. Biochem. Biophys. Res. Commun. 2018;501:927–932. doi: 10.1016/j.bbrc.2018.05.084. [PubMed] [CrossRef] [Google Scholar]
6. Spencer L., Mann C., Metcalfe M., Webb M.B., Pollard C., Spencer D. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur. J. Cancer. 2009;45:2077–2086. doi: 10.1016/j.ejca.2009.04.026. [PubMed] [CrossRef] [Google Scholar]
7. Briscoe C.P., Tadayyon M., Andrews J.L., Benson W.G., Chambers J.K., Eilert M.M. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 2003;278:11303–11311. doi: 10.1074/jbc.M211495200. [PubMed] [CrossRef] [Google Scholar]
8. Hirasawa A., Tsumaya K., Awaji T., Katsuma S., Adachi T., Yamada M. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 2005;11:90–94. doi: 10.1038/nm1168. [PubMed] [CrossRef] [Google Scholar]
9. Quesada-López T., Cereijo R., Turatsinze J.V., Planavila A., Cairó M., Gavaldà-Navarro A. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat. Commun. 2016;7:13479. doi: 10.1038/ncomms13479. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
10. Oliveira V., Marinho R., Vitorino D., Santos G.A., Moraes J.C., Dragano N. Diets containing alpha-linolenic (n-3) or oleic (n-9) fatty acids rescues obese mice from insulin resistance. Endocrinology. 2015;156:4033–4046. doi: 10.1210/en.2014-1880. [PubMed] [CrossRef] [Google Scholar]
11. Freitas R.D.S., Costa K.M., Nicoletti N.F., Kist L.W., Bogo M.R., Campos M.M. Omega-3 fatty acids are able to modulate the painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice. J. Nutr. Biochem. 2016;27:219–232. doi: 10.1016/j.jnutbio.2015.09.007. [PubMed] [CrossRef] [Google Scholar]
12. Nakamoto K., Nishinaka T., Ambo A., Mankura M., Kasuya F., Tokuyama S. Possible involvement of β-endorphin in docosahexaenoic acid-induced antinociception. Eur. J. Pharmacol. 2011;666:100–104. doi: 10.1016/j.ejphar.2011.05.047. [PubMed] [CrossRef] [Google Scholar]
13. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancer in 185 Countries. Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. [PubMed] [CrossRef] [Google Scholar]
14. Neufeld N.J., Elnahal S.M., Alvarez R.H. Cancer pain: A review of epidemiology, clinical quality and value impact. Future Oncol. 2017;13:833–841. doi: 10.2217/fon-2016-0423. [PubMed] [CrossRef] [Google Scholar]
15. Goyal A., Bhatnagar S. Neuropathic pain in cancer. Ann. Palliat. Med. 2014;3:1–3. [PubMed] [Google Scholar]
16. Bennet M.I., Kaasa S., Barke A., Korwisi B., Riek W., Treede R.-D. The IASP classification of chronic pain for ICD-11: Chronic secondary headache and orofacial pain. Pain. 2019;160:38–44. doi: 10.1097/j.pain.0000000000001363. [PubMed] [CrossRef] [Google Scholar]
17. Candido K.D., Kusper T.M., Knezevic N.N. New Cancer Pain Treatment Options. Curr. Pain Headache Rep. 2017;21:1–12. doi: 10.1007/s11916-017-0613-0. [PubMed] [CrossRef] [Google Scholar]
18. Argilés J.M., Stemmler B., López-Soriano F.J., Busquets S. Inter-tissue communication in cancer cachexia. Nat. Rev. Endocrinol. 2018 doi: 10.1038/s41574-018-0123-0. [PubMed] [CrossRef] [Google Scholar]
19. Fearon K., Strasser F., Anker S.D., Bosaeus I., Bruera E., Fainsinger R.L. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011;12:489–495. doi: 10.1016/S1470-2045(10)70218-7. [PubMed] [CrossRef] [Google Scholar]
20. Argilés J.M., Busquets S., Stemmler B., López-Soriano F.J. Cachexia and sarcopenia: Mechanisms and potential targets for intervention. Curr. Opin. Pharm. 2015;22:100–106. doi: 10.1016/j.coph.2015.04.003. [PubMed] [CrossRef] [Google Scholar]
21. Seelaender M., Laviano A., Busquets S., Püschel G.P., Margaria T., Batista M.L., Jr. Inflammation in Cachexia. Mediators Inflamm. 2015;2015:2–4. doi: 10.1155/2015/536954. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Argilés J.M., Busquets S., Stemmler B., López-Soriano F.J. Cancer cachexia: Understanding the molecular basis. Nat. Rev. Cancer. 2014;14:754–762. doi: 10.1038/nrc3829. [PubMed] [CrossRef] [Google Scholar]
23. Bortolato B., Hyphantis T.N., Valpione S., Perini G., Maes M., Morris G. Depression in cancer: The many biobehavioral pathways driving tumor progression. Cancer Treat Rev. 2017;52:58–70. doi: 10.1016/j.ctrv.2016.11.004. [PubMed] [CrossRef] [Google Scholar]
24. Sotelo J.L., Musselman D., Nemeroff C. The biology of depression in cancer and the relationship between depression and cancer progression. Int. Rev. Psychiatry. 2014;26:16–30. doi: 10.3109/09540261.2013.875891. [PubMed] [CrossRef] [Google Scholar]
25. Watts S., Prescott P., Mason J., McLeod N., Lewith G. Depression and anxiety in ovarian cancer: A systematic review and meta-analysis of prevalence rates. BMJ Open. 2015;5:e007618. doi: 10.1136/bmjopen-2015-007618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26. Pelosof L.C., Gerber D.E. Paraneoplastic Syndromes: An Approach to Diagnosis and Treatment. Mayo Clin. Proc. 2010;85:838–854. doi: 10.4065/mcp.2010.0099. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27. Efthymiou C., Spyratos D., Kontakiotis T. Endocrine paraneoplastic syndromes in lung cancer. Hormones. 2018;17:351–358. doi: 10.1007/s42000-018-0046-0. [PubMed] [CrossRef] [Google Scholar]
28. Viau M., Renaud M.C., Grégoire J., Sebastianelli A., Plante M. Paraneoplastic syndromes associated with gynecological cancers: A systematic review. Gynecol. Oncol. 2017;146:661–671. doi: 10.1016/j.ygyno.2017.06.025. [PubMed] [CrossRef] [Google Scholar]
29. Marian M.J. Dietary Supplements Commonly Used by Cancer Survivors: Are There Any Benefits? Nutr. Clin. Pract. 2017;32:607–627. doi: 10.1177/0884533617721687. [PubMed] [CrossRef] [Google Scholar]
30. Saini R.K., Keum Y. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018;203:255–267. doi: 10.1016/j.lfs.2018.04.049. [PubMed] [CrossRef] [Google Scholar]
31. Simopoulos A.P., DiNicolantonio J.J. The importance of a balanced ω-6 to ω-3 ratio in the prevention and management of obesity. Open Hear. 2016;3:e000385. doi: 10.1136/openhrt-2015-000385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
32. Simopoulos A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharmacother. 2006;60:502–507. doi: 10.1016/j.biopha.2006.07.080. [PubMed] [CrossRef] [Google Scholar]
33. Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002;56:365–379. doi: 10.1016/S0753-3322(02)00253-6. [PubMed] [CrossRef] [Google Scholar]
34. Jiang J., Li K., Wang F., Yang B., Fu Y. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on Major Eicosanoids: A Systematic Review and Meta-Analysis from 18 Randomized Controlled Trials. PLoS ONE. 2016;11:e0147351. doi: 10.1371/journal.pone.0147351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35. Fan Y., Fuentes N.R., Hou T.Y., Barhoumi R., Li X.C., Deutz N.E.P. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA. Br. J. Nutr. 2018;119:163–175. doi: 10.1017/S0007114517003385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
36. Fuentes N.R., Kim E., Fan Y., Chapkin R.S. Molecular Aspects of Medicine Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol. Asp. Med. 2018;2017:79–91. doi: 10.1016/j.mam.2018.04.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37. Amézaga J., Arranz S., Urruticoechea A., Ugartemendia G., Larraioz A., Louka M. Altered Red Blood Cell Membrane Fatty Acid Profile. Nutrients. 2018;10:1853. doi: 10.3390/nu10121853. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
38. Gilroy D.W., Bailey D.B. Lipid mediators in immune regulation and resolution. Br. J. Pharmacol. 2019;176:1009–1023. doi: 10.1111/bph.14587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
39. Serhan C.N., Savill J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005;6:1191–1197. doi: 10.1038/ni1276. [PubMed] [CrossRef] [Google Scholar]
40. Maddox B.J.E., Serhan C.N. Lipoxin A4 and B4 Are Potent Stimuli for Human Monocyte Migration and Adhesion: Selective Inactivation by Dehydrogenation and Reduction. J. Exp. Med. 1996;183:137–146. doi: 10.1084/jem.183.1.137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Chandrasekharan J., Sharma-Walia N. Lipoxins: Nature’s way to resolve inflammation. J. Inflamm. Res. 2015;8:181–192. [PMC free article] [PubMed] [Google Scholar]
42. Serhan C.N., Yacoubian S. Anti-Inflammatory and Proresolving Lipid Mediators. Annu. Rev. Pathol. 2008;3:279–312. doi: 10.1146/annurev.pathmechdis.3.121806.151409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43. Zhang M.J., Spite M. Resolvins: Anti-inflammatory and proresolving mediators derived from omega-3 polyunsaturated fatty acids. Annu. Rev. Nutr. 2012;32:203–227. doi: 10.1146/annurev-nutr-071811-150726. [PubMed] [CrossRef] [Google Scholar]
44. Serhan C.N., Chiang N., Dalli J., Levy B.D. Lipid Mediators in the Resolution of Inflammation. Cold Spring Harb. Perspect. Biol. 2015;7:a016311. doi: 10.1101/cshperspect.a016311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
45. Sulciner M.L., Serhan C.N., Gilligan M.M., Mudge D.K., Chang J., Gartung A. Resolvins suppress tumor growth and enhance cancer therapy. J. Exp. Med. 2018;215:115–140. doi: 10.1084/jem.20170681. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Zhang L., Terrando N., Xu Z., Bang S., Jordt S., Baker O.J. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice. Front. Pharmacol. 2018;9:412. doi: 10.3389/fphar.2018.00412. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47. Deyama S., Shimoda K., Suzuki H., Ishikawa Y. Resolvin E1/E2 ameliorate lipopolysaccharide-induced depression-like behaviors via ChemR23. Psychopharmacology. 2018;235:329–336. doi: 10.1007/s00213-017-4774-7. [PubMed] [CrossRef] [Google Scholar]
48. Klein C.P., Sperotto N.D.M., Maciel I.S., Leite C.E., Souza A.H., Campos M.M. Effects of D-series resolvins on behavioral and neurochemical changes in a fibromyalgia-like model in mice. Neuropharmacology. 2014;86:57–66. doi: 10.1016/j.neuropharm.2014.05.043. [PubMed] [CrossRef] [Google Scholar]
49. Seelaender M., Batista M., Lira F., Silverio R., Rossi-Fanelli F. Inflammation in cancer cachexia: To resolve or not to resolve (is that the question?) Clin. Nutr. 2012;31:562–566. doi: 10.1016/j.clnu.2012.01.011. [PubMed] [CrossRef] [Google Scholar]
50. Ma D., Tao B., Warashina S., Kotani S., Lu L., Kaplamadzhiev D.B. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci. Res. 2007;58:394–401. doi: 10.1016/j.neures.2007.05.001. [PubMed] [CrossRef] [Google Scholar]
Shopping Cart