Source from Kelvin A. Power’s Facebook on August 12, 2019
ဒီခေတ်မြန်မာနိုင်ငံကြီးမှာလူတွေအားလုံးနီးပါးရောဂါတွေသိပ်ပြီးထူပြောကြတာပဲ။ဘာကြောင့်သိပ်ထူပြောတာလဲဆိုတာသေချာသုသေသနလုပ်ကြည့်တော့။ကမ္ဘာပေါ်မှာမြန်မာနိုင်ငံဟာ(PUFA)ကိုအများဆုံးစားသုံးတဲ့တိုင်းပြည်ဖြစ်နေပါတယ်။ဂလူးကိုစ်(Glucose)နဲ့ဖလူးတို့စ်(fructose)ဆိုတဲ့သကြားနှစ်မျိုးကြောင့်ရောဂါအမျိုးမျိုးဖြစ်တာလူတော်တော်များများသိနေပါပြီ။သူတို့ထက်ဆိုးတဲ့အရာကတော့
များစွာမပြည့်ဝဆီ(PUFA)ပါပဲ။
——–
ပြည့်ဝဆီ(saturated fat)ကိုအသဲထဲမှာ စွမ်းအင်ထုတ်(metabolize)လုပ်ရင်တဆင့်လောက်ပဲလုပ်ရတယ်။
တခုမပြည့်ဝဆီ(MUFA)ကိုအသဲထဲမှာစွမ်းအင်ထုတ်(metabolize)လုပ်ရင်နှစ်ဆင့်လောက်ပဲလုပ်ရတယ်။ဒီလိုစွမ်းအင်ထုတ်လုပ်တိုင်း၊အဆင့်တိုင်းမှာဆီချေးတက်၍အဆိပ်ဖြစ်ခြင်း(lipid peroxidation)ဖြစ်တယ်။အဲဒီဖြစ်စဉ်ကထွက်လာတဲ့
လွတ်လပ်တဲ့ရေဒီယိုသတ္တိကြွပစ္စည်း(free radicals)ဆိုတာခန္ဓာကိုယ်တခုလုံးကိုအကြီးအကျယ်ဒုက္ခပေးတယ်။ပြည့်ဝဆီ(saturated fat)ဟာတစ်ဆင့်ပဲစွမ်းအင်ထုတ်(metabolize)လုပ်ရလို့(lipid peroxidation)တကြိမ်သာလျှင်ဖြစ်တယ်။တခုမပြည့်ဝဆီ(MUFA)ကိုအသဲထဲမှာစွမ်းအင်ထုတ်(metabolize)လုပ်ရင်နှစ်ဆင့်လောက်ပဲလုပ်ရလို့(free radicals)ဆိုတာနှစ်ဆပဲထွက်တယ်။အဲဒီလောက်အဆိပ်သင့်မှု့ကိုခန္ဓာကိုယ်မှာရှိနေတဲ့
တန်ပြန်အဆိပ်ဖြေမှုစနစ်(antioxidant system)ကြီးကကကြိုးစားကိုင်တွယ်ဖြေရှင်းနိုင်သေးတယ်။
များစွာမပြည့်ဝဆီ(PUFA)ကိုကြတော့အသဲထဲမှာစွမ်းအင်ထုတ်(metabolize)လုပ်ရင်ရှစ်ဆင့်လောက်လုပ်ရတော့
လွတ်လပ်တဲ့ရေဒီယိုသတ္တိကြွပစ္စည်း(free radicals)အဆိပ်ရှစ်ခါ၊ရှစ်ဆထွက်လာတယ်။အဲဒီရှစ်ဆကိုတော်ရုံတန်ရုံအဆိပ်ဖြေမှုစနစ်(antioxidant system)တွေကမကိုင်တွယ်မဖြေရှင်းနိုင်တော့ဘူး။မဖြေရှင်းနိုင်တော့(free radical)များလာတယ်။များလာတော့ရောင်ကိုင်းမှု(inflammation)တွေအကြီးအကျယ်ဖြစ်တယ်။(Immune System)ဖောက်ပြန်ပျက်စီးသွားတယ်။
ကင်ဆာ၊နှလုံး၊ဆီးချို၊အသဲ၊မိမိခုခံမှုစနစ်ကမိမိအားမှားယွင်းတိုက်ခိုက်မှု့အစရှိတဲ့(Autoimmune Diseases) အစရှိတဲ့နာတာရှည်ရောဂါအားလုံးရဲ့အဓိကတရားခံဟာ(PUFAs)တွေပါပဲ။ (PUFAs)ဆိုတာရေရှည်စွဲသတ်မယ့်အဆိပ်ပါပဲ။အဲဒီ(PUFAs)တွေနဲ့လွတ်တဲ့ဆီ။လွတ်တဲ့အစားအစာမြန်မာပြည်မှာမရှိတော့ပါဘူး။လုံးဝရှောင်ဖို့ဆိုတာလဲမရနိုင်ပါဘူး။သူကလဲခန္ဓာကိုယ်အတွက်နည်းနည်းလေးတော့လိုအပ်ပါတယ်။သူ့ဆီကထွက်လာမယ့်အဆိပ်သင့်မှု(oxidative stress)ကာကွယ်နိုင်ဖို့မိမိရဲ့တန်ပြန်အဆိပ်ဖြေမှုစနစ်(antioxidant system)ကိုအင်အားကောင်းလာအောင်လုပ်ယူရတော့မယ်။အဲဒါကို***ဆီးချိုရောဂါ၏လူမသိသေးသောလျို့ဝှက်ချက်များ***နောက်ပိုင်းအပိုင်းဆက်တွေမှာအသေးစိတ်ရေးပေးပါမယ်။အခုတော့အကြမ်းပဲမှတ်ထားလိုက်ကြပါ။
—–
—–အဓိပ္ပါယ်ဖွင့်ဆိုချက်———
(PUFA)=Polyunsaturated fatty acid=များစွာမပြည့်ဝဆီ။
မပြည့်ဝတော့နေရာလွတ်နေတယ်။နေရာလွတ်နေတော့
လွတ်တဲ့နေရာ(double bond)တွေမှာ(Oxidation)တွေပိုဖြစ်တာပေါ့။
(PUFAs)တွေက၊ပြောင်းဖူးဆီ၊နေကြာဆီ၊ပဲပုတ်စေ့ဆီ၊မြေပဲဆီ၊Vegetable oil ခေါ်ဟင်းသီးဟင်းရွက်ဆီ။နမ်းဆီ။
မြေပဲဆီစစ်စစ်က(GLA)ပါနေလို့နဲနဲလေးတော်သေးတယ်။
———-
(MUFA)= Monounsaturated fatty acid=တစ်ခုမပြည့်ဝဆီ။
တခုမပြည့်ဝတော့တစ်နေရာပဲလွတ်နေတယ်။တစ်နေရာလွတ်နေတော့
လွတ်တဲ့နေရာ(double bond)တခုမှာ(Oxidation)တခုပဲဖြစ်နိုင်တယ်။
(MUFA)=ဆိုတာကအိုလစ်သီးဆီ(olive oil)၊ထောပါတ်သီးအဆီ(avocado oil)နဲ့ကင်နိုလာဆီ(canola oil)။အိုလစ်သီးဆီနဲ့ထောပါတ်သီးအဆီကသဘာဝဖြစ်လို့သိပ်ကောင်းတယ်။
ကင်နိုလာဆီ(canola oil)ကအရှင်းရှင်တွေလုပ်ထားတဲ့အဆိပ်ဖြစ်တဲ့အပင်တမျိုးကနေအလွန်အန္တရာယ်များတဲ့ဓါတုဗေဒဆေးတွေသုံးပြီးစစ်ထုတ်ထားလို့အလွန်အန္တရာယ်များတယ်။ကင်နိုလာဆီ(canola oil)ကအဆိုးဆုံးအဆီတမျိုးဖြစ်လဲတယ်။
——————
(SA)= saturated fat =ပြည့်ဝဆီ
ပြည့်ဝနေတော့နေရာမလွတ်ဘူး။နေရာလွတ်မလွတ်တော့(double bond)မရှိဘူး။မရှိတော့(Oxidation)မဖြစ်နိုင်ဘူး။ရှင်းရှင်းလေးပါ။
(SA)= saturated fat =ပြည့်ဝဆီတွေကတော့ဝက်ဆီ၊ထောပါတ်၊အုန်းဆီခေါ်အုန်းသီးဆီ၊စားအုန်းဆီ။
—-
အကြော်မှာသုံးတဲ့ စားအုံးဆီဆိုတာအုန်းသီးဆီမဟုတ်ဘူး။(Palm Oil)ကသဘာဝအားဖြင့်သိပ်ကောင်းတယ်။ထုတ်လုပ်တဲ့လူတွေကသန့်ရှင်းစနစ်ကျရင်ပေါ့။မသန့်ရှင်းပဲဓါတုဗေဒပစ္စည်းသုံးရင်တော့မကောင်းဘူး။အဲဒါဘယ်ကုမ္မဏီကဓါတုဗေဒသုံးတယ်မသုံးဘူးဆိုတာကျွန်တော်မသိဘူး။ကိုယ်တိုင်လေ့လာပါ။စားအုန်းဆီဆိုတာကမ္ဘာပေါ်မှာ(Natural fat soluble antioxidant)အများဆုံးဆီ။သူ့ထက်များတာကမ္ဘာမှာမရှိဘူး။ထုတ်လုပ်သူကသေချာထုတ်လုပ်ရင်အဲဒီအကျိုးအပြည့်ရတယ်။သေချာမထုတ်ရင်အဲဒီဓါတ်တွေအကုန်ပျက်စီးတယ်။
————————-
————————-
lipid peroxidation(OR)Oxidation=ဆီချေးတက်အဆိပ်ဖြစ်ခြင်း။
(free radicals)= လွတ်လပ်တဲ့ရေဒီယိုသတ္တိကြွပစ္စည်း
—————–
နောက်မှအဆိပ်ဖြေနည်းအသေးစိတ်ရေးမည်။
———–
Kelvin Albert Power
(Nutrition Specialist, Florida, USA)
——–References——–
1. Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002;53:35–57. [PubMed] [Google Scholar]
2. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000. [PMC free article] [PubMed] [Google Scholar]
3. Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J. 2012;442:453–464. [PMC free article] [PubMed] [Google Scholar]
4. Breuer W, Shvartsman M, Cabantchik ZI. Intracellular labile iron. Int J Biochem Cell Biol. 2008;40:350–354. [PubMed] [Google Scholar]
5. Marisa Repetto JS, Boveris Alberto. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. In: Catala DA, editor. Lipid Peroxiation. InTech; 2012. [Google Scholar]
6. Laneuville O, Breuer DK, Xu N, Huang ZH, Gage DA, Watson JT, Lagarde M, DeWitt DL, Smith WL. Fatty acid substrate specificities of human prostaglandin-endoperoxide H synthase-1 and -2. Formation of 12-hydroxy-(9Z, 13E/Z, 15Z)-octadecatrienoic acids from alpha-linolenic acid. J Biol Chem. 1995;270:19330–19336. [PubMed] [Google Scholar]
7. Rouzer CA, Matsumoto T, Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci U S A. 1986;83:857–861. [PMC free article] [PubMed] [Google Scholar]
8. Radmark O. Arachidonate 5-lipoxygenase. Prostaglandins Other Lipid Mediat. 2002;68-69:211–234. [PubMed] [Google Scholar]
9. Radmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta. 2015;1851:331–339. [PubMed] [Google Scholar]
10. Radmark O, Werz O, Steinhilber D, Samuelsson B. 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci. 2007;32:332–341. [PubMed] [Google Scholar]
11. Percival MD, Denis D, Riendeau D, Gresser MJ. Investigation of the mechanism of non-turnover-dependent inactivation of purified human 5-lipoxygenase. Inactivation by H2O2 and inhibition by metal ions. Eur J Biochem. 1992;210:109–117. [PubMed] [Google Scholar]
12. Peters-Golden M, Brock TG. 5-lipoxygenase and FLAP. Prostaglandins Leukot Essent Fatty Acids. 2003;69:99–109. [PubMed] [Google Scholar]
13. Ackermann JA, Hofheinz K, Zaiss MM, Kronke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta. 2016 [PubMed] [Google Scholar]
14. Brash AR, Boeglin WE, Chang MS. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A. 1997;94:6148–6152. [PMC free article] [PubMed] [Google Scholar]
15. Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res. 2011;50:115–131. [PMC free article] [PubMed] [Google Scholar]
16. Soberman RJ, Harper TW, Betteridge D, Lewis RA, Austen KF. Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid omega-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes. J Biol Chem. 1985;260:4508–4515. [PubMed] [Google Scholar]
17. Takahashi Y, Glasgow WC, Suzuki H, Taketani Y, Yamamoto S, Anton M, Kuhn H, Brash AR. Investigation of the oxygenation of phospholipids by the porcine leukocyte and human platelet arachidonate 12-lipoxygenases. Eur J Biochem. 1993;218:165–171. [PubMed] [Google Scholar]
18. Jung G, Yang DC, Nakao A. Oxygenation of phosphatidylcholine by human polymorphonuclear leukocyte 15-lipoxygenase. Biochem Biophys Res Commun. 1985;130:559–566. [PubMed] [Google Scholar]
19. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Radmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Forster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–1191. [PMC free article] [PubMed] [Google Scholar]
20. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–331. [PMC free article] [PubMed] [Google Scholar]
21. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. [PMC free article] [PubMed] [Google Scholar]
22. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128. [PubMed] [Google Scholar]
23. Spickett CM. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol. 2013;1:145–152. [PMC free article] [PubMed] [Google Scholar]
24. Schneider C, Tallman KA, Porter NA, Brash AR. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem. 2001;276:20831–20838. [PubMed] [Google Scholar]
25. Schneider C, Boeglin WE, Yin H, Ste DF, Hachey DL, Porter NA, Brash AR. Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their transformation to 4-hydroperoxynonenal. Lipids. 2005;40:1155–1162. [PubMed] [Google Scholar]
26. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15:316–328. [PubMed] [Google Scholar]
27. Schneider C, Porter NA, Brash AR. Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem. 2008;283:15539–15543. [PMC free article] [PubMed] [Google Scholar]
28. Gu X, Salomon RG. Fragmentation of a linoleate-derived gamma-hydroperoxy-alpha,beta-unsaturated epoxide to gamma-hydroxy- and gamma-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical. Free Radic Biol Med. 2012;52:601–606. [PMC free article] [PubMed] [Google Scholar]
29. Kaur K, Salomon RG, O’Neil J, Hoff HF. (Carboxyalkyl)pyrroles in human plasma and oxidized low-density lipoproteins. Chem Res Toxicol. 1997;10:1387–1396. [PubMed] [Google Scholar]
30. Yin HY, Xu LB, Porter NA. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem Rev. 2011;111:5944–5972. [PubMed] [Google Scholar]
31. Mario Diaz AC. Editorial: Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Frontiers in Physiology. 2016;7 [PMC free article] [PubMed] [Google Scholar]
32. Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J. 2007;93:4225–4236. [PMC free article] [PubMed] [Google Scholar]
33. Li XM, Salomon RG, Qin J, Hazen SL. Conformation of an endogenous ligand in a membrane bilayer for the macrophage scavenger receptor CD36. Biochemistry. 2007;46:5009–5017. [PubMed] [Google Scholar]
34. Borst JW, Visser NV, Kouptsova O, Visser AJ. Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes. Biochim Biophys Acta. 2000;1487:61–73. [PubMed] [Google Scholar]
35. Heffern CT, Pocivavsek L, Birukova AA, Moldobaeva N, Bochkov VN, Lee KY, Birukov KG. Thermodynamic and kinetic investigations of the release of oxidized phospholipids from lipid membranes and its effect on vascular integrity. Chem Phys Lipids. 2013;175-176:9–19. [PMC free article] [PubMed] [Google Scholar]
36. Gurbuz G, Heinonen M. LC-MS investigations on interactions between isolated beta-lactoglobulin peptides and lipid oxidation product malondialdehyde. Food Chem. 2015;175:300–305. [PubMed] [Google Scholar]
37. Reilly CA, Aust SD. Measurement of lipid peroxidation. Curr Protoc Toxicol. 2001 Chapter 2, Unit 2 4. [PubMed] [Google Scholar]
38. Yan LJ, Forster MJ. Chemical probes for analysis of carbonylated proteins: a review. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:1308–1315. [PMC free article] [PubMed] [Google Scholar]
39. Braughler JM, Duncan LA, Chase RL. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J Biol Chem. 1986;261:10282–10289. [PubMed] [Google Scholar]
40. Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta. 2014;1840:809–817. [PubMed] [Google Scholar]
41. Chen CT, Green JT, Orr SK, Bazinet RP. Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fatty Acids. 2008;79:85–91. [PubMed] [Google Scholar]
42. Dalleau S, Baradat M, Gueraud F, Huc L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013;20:1615–1630. [PMC free article] [PubMed] [Google Scholar]
43. Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016;26:165–176. [PMC free article] [PubMed] [Google Scholar]
44. Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov. 2010;9:387–398. [PubMed] [Google Scholar]
45. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry. 1999;38:7609–7616. [PubMed] [Google Scholar]
46. Pratico D, Zhukareva V, Yao Y, Uryu K, Funk CD, Lawson JA, Trojanowski JQ, Lee VM. 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol. 2004;164:1655–1662. [PMC free article] [PubMed] [Google Scholar]
47. Succol F, Pratico D. A role for 12/15 lipoxygenase in the amyloid beta precursor protein metabolism. J Neurochem. 2007;103:380–387. [PubMed] [Google Scholar]
48. Arlt S, Muller-Thomsen T, Beisiegel U, Kontush A. Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer’s disease. Neurochem Res. 2012;37:2706–2714. [PubMed] [Google Scholar]
49. Tolonen M, Halme M, Sarna S. Vitamin E and selenium supplementation in geriatric patients : A double-blind preliminary clinical trial. Biol Trace Elem Res. 1985;7:161–168. [PubMed] [Google Scholar]
50. Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, Cotman C, Cottrell B, Montine TJ, Thomas RG, Aisen P, Alzheimer’s Disease Cooperative S. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2012;69:836–841. [PMC free article] [PubMed] [Google Scholar]
51. Persson T, Popescu BO, Cedazo-Minguez A. Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid Med Cell Longev. 2014;2014:427318. [PMC free article] [PubMed] [Google Scholar]
52. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–1072. [PMC free article] [PubMed] [Google Scholar]
53. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113:E4966–4975. [PMC free article] [PubMed] [Google Scholar]
54. Krainz T, Gaschler MM, Lim C, Sacher JR, Stockwell BR, Wipf P. A Mitochondrial-Targeted Nitroxide Is a Potent Inhibitor of Ferroptosis. ACS Central Science. 2016 [PMC free article] [PubMed] [Google Scholar]
55. Steinhilber D, Hofmann B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin Pharmacol Toxicol. 2014;114:70–77. [PubMed] [Google Scholar]
56. Bell RL, Young PR, Albert D, Lanni C, Summers JB, Brooks DW, Rubin P, Carter GW. The discovery and development of zileuton: an orally active 5-lipoxygenase inhibitor. Int J Immunopharmacol. 1992;14:505–510. [PubMed] [Google Scholar]
57. Young RN. Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? European Journal of Medicinal Chemistry. 1999;34:671–685. [Google Scholar]
58. Kenyon V, Rai G, Jadhav A, Schultz L, Armstrong M, Jameson JB, 2nd, Perry S, Joshi N, Bougie JM, Leister W, Taylor-Fishwick DA, Nadler JL, Holinstat M, Simeonov A, Maloney DJ, Holman TR. Discovery of potent and selective inhibitors of human platelet-type 12- lipoxygenase. J Med Chem. 2011;54:5485–5497. [PMC free article] [PubMed] [Google Scholar]
59. Eleftheriadis N, Neochoritis CG, Leus NG, van der Wouden PE, Domling A, Dekker FJ. Rational Development of a Potent 15-Lipoxygenase-1 Inhibitor with in Vitro and ex Vivo Anti-inflammatory Properties. J Med Chem. 2015;58:7850–7862. [PMC free article] [PubMed] [Google Scholar]
60. Hill S, Lamberson CR, Xu L, To R, Tsui HS, Shmanai VV, Bekish AV, Awad AM, Marbois BN, Cantor CR, Porter NA, Clarke CF, Shchepinov MS. Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic Biol Med. 2012;53:893–906. [PMC free article] [PubMed] [Google Scholar]
61. Andreyev AY, Tsui HS, Milne GL, Shmanai VV, Bekish AV, Fomich MA, Pham MN, Nong Y, Murphy AN, Clarke CF, Shchepinov MS. Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress. Free Radic Biol Med. 2015;82:63–72. [PubMed] [Google Scholar]
62. Cotticelli MG, Crabbe AM, Wilson RB, Shchepinov MS. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids. Redox Biol. 2013;1:398–404. [PMC free article] [PubMed] [Google Scholar]
63. Maiorino M, Roveri A, Coassin M, Ursini F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51) Biochem Pharmacol. 1988;37:2267–2271. [PubMed] [Google Scholar]
64. Takebe G, Yarimizu J, Saito Y, Hayashi T, Nakamura H, Yodoi J, Nagasawa S, Takahashi K. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem. 2002;277:41254–41258. [PubMed] [Google Scholar]
65. Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3–12. [PubMed] [Google Scholar]