Source from Kelvin A. Power’s Facebook on August 4, 2019
ဒီကင်ဆာရောဂါမျိုးတွေဟာယောင်္ကျားမိန်းမ၊မခွဲခြားပဲလူတိုင်းနဲ့သက်ဆိုင်နေတဲ့အတွက်ဒီစာကိုမဖတ်ပဲနဲ့ကျော်သွားရင်တော့တနေ့နောင်တရကြပါလိမ့်မည်။ဟော်မုန်းနဲ့ပါတ်သက်တဲ့ကင်ဆာဆိုတာကအထူးသဖြင့်အမျိုးသမီးတွေမှာပိုပြီးအဖြစ်များပါတယ်။အမှန်အတိုင်းပြောရရင်လာမယ့်ဆယ်စုနှစ်တစ်ခု၊နှစ်ခုလောက်အတွင်းမှာအရွယ်ရောက်ပြီးအမျိုးသမီးတိုင်းနီးပါးလောက်ဟာသားဥအိမ်ကင်ဆာခေါ်(Ovarian Cancer)၊ရင်သားကင်ဆာခေါ်(Breast Cancer)နှင့်သားအိမ်နံရံ၊သားအိမ်ခေါင်း၊သားအိမ်ဝနဲ့မွေးလမ်းကြောင်းတွေမှာဖြစ်တတ်တဲ့(Endometrial Cancers)ခေါ်ကင်ဆာအမျိုးမျိူးထဲကတခုခုဖြစ်ဖြစ်လာဖို့(၉၀%)ကျော်လောက်ကိုသေချာနေပါတယ်။အမှန်ပါချိန်းခြောက်နေတာမဟုတ်ပါဘူး။ဘာကြောင့်ဒီလိုအတိအကျပြောနိုင်လဲဆိုတာကိုနောက်ပိုင်းမှာသေချာရေးပေးပါမယ်။အမျိုးသမီးတွေမှာအဖြစ်များမယ်ဆိုတော့အမျိုးသားတွေကတော်သေးတာပေါ့ဆိုပြီးတော့သက်ပြင်းမချလိုက်ပါနဲ့အုံး၊အမျိုးသားတွေလဲမလွတ်ပါဘူး။ဆီးကြိတ်ကင်ဆာခေါ်(prostate cancer )ဝှေးစေ့ကင်ဆာခေါ်(testicular cancer)တွေလဲအမျိုးသားတွေအတော်များများမှာဖြစ်လာဖို့ရှိနေပါတယ်။
———–
ကင်ဆာဆိုတဲ့ရောဂါဟာဖြစ်လာတော့မှကုလို့လွယ်လွယ်နဲ့ပျောက်နိုင်တဲ့ရောဂါမျိုးမဟုတ်ပါဘူး။ကြိုတင်ကာကွယ်ထားဖို့ကသိပ်ကိုအရေးကြီးနေပါတယ်။ကင်ဆာဆိုတာကဒီခေတ်ဆေးပညာနဲ့ကုသလို့လဲပျောက်ကင်းနိုင်တဲ့ရောဂါမျိုးလုံးဝမဟုတ်ပါဘူး။ဒီခေတ်ဆေးပညာဟာကင်ဆာဖြစ်လာရင်ခွဲစိတ်ကုသမယ်။(Radiation Therapy)လို့ခေါ်တဲ့အလွန်ပြင်းထန်တဲ့ဓါတ်ရောင်ခြည်တွေနဲ့ကင်ပြီးကုသမယ်၊ကီမိုသရဖီ(Chemotherapy)လို့ခေါ်တဲ့အလွန်ကြောက်စရာကောင်းပြီးခန္ဒာကိုယ်ကိုလဲအဆိပ်သင့်စေ၊မိမိရဲ့ခုခံအားစနစ်တစ်ခုလုံးကိုလဲပျက်စီးစေတဲ့အဆိပ်ကျွေးပြီးကုသနည်းနဲ့ကုသမယ်။ဒါပေမဲ့ပျောက်လားဆိုတော့မပျောက်ပါဘူး။ပိုပြီးဆိုးသွားတာပဲရှိတာပါ။ခိုင်မာတဲ့သုသေသနအထောက်အထားတွေအရဆိုရင်ကင်ဆာရောဂါကိုမကုပဲဒီတိုင်းထားတာနဲ့စာရင်ဒီခေတ်ဆေးပညာနဲ့ကုသတဲ့သူတွေကပိုပြီးတော့သက်တန်းတိုရတဲ့အပြင်၊ဓါတ်ရောင်ခြည်နဲ့ကီမိုသရဖီတွေကရတဲ့အဆိပ်အတောက်တွေကြောင့်မသေခင်လဲအလူးအလဲ၊အဝီစိငရဲမှာခံစားရသလိုမျိုးအလွန်ပြင်းထန်တဲ့ဝေဒနာတွေလဲခံစားသွားရရှာတယ်လို့သိရှိရပါတယ်။ရှင်းရှင်းပြောရရင်တော့ဒီကုထုံးတွေရဲ့ဘေးထွက်ဆိုးကျိုးကြောင့်အလွန်ပြင်းထန်တဲ့ဝေဒနာတွေခံစားကြရပြီးအသေလဲမလှကြရဘူးပေါ့။အသေမလှတော့ဘဝကူးလဲမကောင်းဘူးပေါ့ဗျာ။သိပ်သနားစရာကောင်းပါတယ်။
————————
ကင်ဆာရောဂါကိုခွဲစိတ်ကုသတာတို့၊ဓါတ်ရောင်ခြည်တွေနဲ့ကင်ပြီးကုသတာတို့၊ကီမိုသရဖီလို့ခေါ်တဲ့အလွန်ပြင်းထန်တဲ့အဆိပ်တွေနဲ့ကုတာတို့ဆိုတာကရောဂါတာမပျောက်ကင်းတာပါလူနာတွေအတွက်မှာတော့အလွန်ကုန်ကျစရိတ်များပြီးအရင်းရှင်ဆေးကုမ္မဏီကြီးတွေ၊ဆေးရုံကြီးတွေအတွက်ကတော့စီးပွားရေးအရဆိုရင်တော်တော်လေးကိုတွက်ချေကိုက်ကြတယ်ဗျ။ကင်ဆာဖြစ်တဲ့လူတစ်ယောက်တွေ့ပြီဆိုရင်နွားတကောင်လိုနဖားကျိုးလေးထိုးလိုက်ပြီးတော့ဝိုင်းပြီးဂုတ်သွေးစုတ်ကြပါလေရော။ဆေးကုမ္မဏီကြီးတွေဟာဒီလိုအလုပ်မဖြစ်တဲ့ကုသနည်းတွေနဲ့ကုသဖို့အမေရိကန်ဒေါ်လာကိုသန်းထောင်နဲ့ချီရင်းနီးမြုတ်နှံထားပြီးတော့စက်ကရိယာတွေဝယ်ယူထုတ်လုပ်ထားပြီးသားဆိုတော့ကင်ဆာကိုတကယ်ပျောက်တဲ့တခြားနည်းတွေရှိရင်တောင်သူတို့ရဲ့ရင်းနီးမြုတ်နှံထားတဲ့ငွေတွေအရံှုးခံပြီးတခြားနည်းကိုပြောင်းလဲပြီးတော့ဘယ်တော့မှကုမှာမဟုတ်ပါဘူး။မကုတဲ့အပြင်တကယ်ပျောက်တဲ့နည်းစနစ်တွေကိုဖေါ်ထုတ်ပေးနိုင်တဲ့သူတွေကိုပါလိုက်ရန်ပြုပြီးတိုက်ခိုက်နေကြပါတယ်။အမှန်အတိုင်းထပ်ပြောရရင်၊ဒီခေတ်ဆေးပညာဟာ၊နာတာရှည်ရောဂါတွေကိုပျောက်အောင်ကုသဖို့ဒီဇိုင်းလုပ်ထားတာမဟုတ်ပါဘူး။လူနာတွေဆီကပိုက်ဆံကိုမသေမချင်းညှင်းဆဲပြီးရေရှည်များများရအောင်၊ရောဂါမပျောက်ကင်းအောင်တမင်ရေရှည်ဆွဲကုဖို့လူနာကိုနွားတစ်ကောင်လိုနှဖားကြိုးထိုးနိုင်ဖို့အတွက်အရှင်းရှင်ဆေးကုမ္မဏီကြီးတွေကိုယ်တိုင်သေသေချာချာအကွက်ချပြီးဒီဇိုင်းဆွဲထားတာပါ။အခုခေတ်မှာကျန်းမာရေးအတွက်ဆေးပညာဆိုတာမရှိတော့ပါဘူး။စီးပွါးရေးအတွက်ဆေးပညာဖြစ်သွားပါပြီ။ကိုယ်ကအဲဒီအရင်းရှင်ဆေးပညာရဲ့ဓါးစာခံသားကောင်မဖြစ်အောင်ဒီလိုအဖိုးတန်တဲ့အသိပညာပေးစာတွေကိုများများဖတ်ဖို့လိုပါတယ်။ဒီနေရာမှာဒီအရင်းရှင်ဆေးပညာစနစ်ဆိုးအောက်မှာအလုပ်လုပ်နေကြတဲ့ဆရာဝန်တွေကိုပုတ်ခတ်ပြီးပြောနေတာမဟုတ်ပါဘူး။ဘာကြောင့်လဲဆိုတော့အဲဒီဆရာဝန်တွေကိုယ်တိုင်ကကျွန်တော်တို့တွေလိုပဲဒီအရင်းရှင်ဆေးပညာစနစ်ရဲ့ဓါးစာခံသားကောင်လက်ကိုင်တုတ်တွေဖြစ်နေလို့ပါပဲ။
—————
ဒီလိုအမျိုးသမီးတွေအားလုံးနီးပါးမှာမကြာခင်ဖြစ်လာနိုင်တဲ့၊သားဥအိမ်ကင်ဆာ၊ရင်သားကင်ဆာ၊သားအိမ်နံရံကင်ဆာ၊သားအိမ်ခေါင်းကင်ဆာ၊သားအိမ်ဝကင်ဆာနဲ့မွေးလမ်းကြောင်းကင်ဆာတွေနဲ့အတူအမျိုးသားတွေမှာဖြစ်လာမဲ့ဆီးကြိတ်ကင်ဆာ၊ဝေးစေ့ကင်ဆာတွေဟာလယ်လောက်အထိတောင်ဆိုးတယ်၊ဘယ်လောက်အထိတောင်ကြောက်စရာကောင်းတယ်။ဘယ်လိုပြန့်ပွားတယ်။ဘယ်လိုအသက်အန္တရာယ်ထိခိုက်ပြီးသေဆုံးရတယ်ဆိုတာတွေကတော့လူတိုင်းသိပြီးသားတွေဖြစ်လို့ကျွန်တော်အချိန်အကုန်ခံအကျယ်ချဲ့ပြီးတော့မရေးချင်တော့ပါဘူး။ဒီရောဂါလက္ခဏာတွေအကြောင်းရေးထားတဲ့ပို့စ်တွေအများကြီးလိုင်းပေါ်မှာတွေ့တွေ့နေရပါတယ်။သိချင်ရင်ကိုယ့်ဟာကိုယ်ရှာပြီးဖတ်ကြပါ။ကျွန်တော်ကတော့အချိန်သိပ်မရလို့ဒီရောဂါတွေနဲ့ပါတ်သက်ပြီးတန်ဖိုးမဖြတ်နိုင်တဲ့အချက်သုံးချက်ကိုပဲအကျယ်ချဲ့ပြီးရေးပေးပါမယ်။နံပါတ်(၁)အချက်ကဒီရောဂါတွေဘာကြောင့်အစပြုဖြစ်လာရတာလဲ၊ဘာကြေင့်မကြာခင်လူတိုင်းနီးပါးမှာဖြစ်လာနိုင်တယ်လို့ပြောနိုင်တာလဲ?။နံပါတ်(၂)အချက်ကဒီရောဂါတွေကိုမိမိမှာလုံးဝမဖြစ်အောင်ဘယ်လိုနည်းနဲ့ကာကွယ်ရမလဲ?။နံပါတ်(၃)အချက်ကတော့ဒီရောဂါတွေဖြစ်နေတဲ့လူနာတွေအတွက်ရောအမှန်တကယ်ပျောက်အောင်ဘယ်လိုကုပြီးသူတို့တွေရဲ့အသက်ကိုဘယ်လိုကယ်တင်နိုင်မလဲဆိုတဲ့အချက်သုံးချက်ကိုပဲအဓိကထားပြီးအကျယ်ချဲ့ရေးပေးထားဖို့ရည်ရွယ်ထားပါတယ်။
———————
အခုတော့နားပါဦးမည်။
———-
Kelvin Albert Power
(Nutrition Specialist, Florida, USA)
————–References——————-
1. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society Scientific Statement. Endocr Rev. 2009;30:293–342. [PMC free article] [PubMed] [Google Scholar]
2. Gore AC, Chappell VA, Fenton SE, et al. Executive summary to EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:••••. [PMC free article] [PubMed] [Google Scholar]
3. Zoeller RT, Brown TR, Doan LL, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153:4097–4110. [PMC free article] [PubMed] [Google Scholar]
4. Dodds EC, Lawson W. Synthetic oestrogenic agents without the phenanthrene nucleus. Nature. 1936;137:996. [Google Scholar]
5. vom Saal FS, Welshons WV. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that BPA causes numerous hazards from multiple routes of exposure. Mol Cell Endocrinol. 2014;398:101–113. [PMC free article] [PubMed] [Google Scholar]
6. Meeker JD, Ferguson KK. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Environ Health Perspect. 2011;119:1396–1402. [PMC free article] [PubMed] [Google Scholar]
7. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116:39–44. [PMC free article] [PubMed] [Google Scholar]
8. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 2002;15:1281–1287. [PubMed] [Google Scholar]
9. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781. [PMC free article] [PubMed] [Google Scholar]
10. Churchwell MI, Camacho L, Vanlandingham MM, et al. Comparison of life-stage-dependent internal dosimetry for bisphenol A, ethinyl estradiol, a reference estrogen, and endogenous estradiol to test an estrogenic mode of action in Sprague Dawley rats. Toxicol Sci. 2014;139:4–20. [PMC free article] [PubMed] [Google Scholar]
11. Vandenberg LN, Gerona RR, Kannan K, et al. A round robin approach to the analysis of bisphenol A (BPA) in human blood samples. Environ Health. 2014;13:25. [PMC free article] [PubMed] [Google Scholar]
12. Patterson TA, Twaddle NC, Roegge CS, Callicott RJ, Fisher JW, Doerge DR. Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys. Toxicol Appl Pharmacol. 2013;267:41–48. [PubMed] [Google Scholar]
13. Gerona RR, Woodruff TJ, Dickenson CA, et al. Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in midgestation umbilical cord serum in a northern and central California population. Environ Sci Technol. 2013;47:12477–12485. [PMC free article] [PubMed] [Google Scholar]
14. Liao C, Kannan K. Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography-tandem mass spectrometry. Environ Sci Technol. 2012;46:5003–5009. [PubMed] [Google Scholar]
15. Veiga-Lopez A, Pennathur S, Kannan K, et al. Impact of gestational bisphenol A on oxidative stress and free fatty acids: human association and interspecies animal testing studies. Endocrinology. 2015;156:911–922. [PMC free article] [PubMed] [Google Scholar]
16. Teeguarden J, Hanson-Drury S, Fisher JW, Doerge DR. Are typical human serum BPA concentrations measurable and sufficient to be estrogenic in the general population? Food Chem Toxicol. 2013;62:949–963. [PubMed] [Google Scholar]
17. Nahar MS, Liao C, Kannan K, Dolinoy DC. Fetal liver bisphenol A concentrations and biotransformation gene expression reveal variable exposure and altered capacity for metabolism in humans. J Biochem Mol Toxicol. 2013;27:116–123. [PMC free article] [PubMed] [Google Scholar]
18. Wu MT, Wu CF, Wu JR, et al. The public health threat of phthalate-tainted foodstuffs in Taiwan: the policies the government implemented and the lessons we learned. Environ Int. 2012;44:75–79. [PubMed] [Google Scholar]
19. Wu CF, Chang-Chien GP, Su SW, Chen BH, Wu MT. Findings of 2731 suspected phthalate-tainted foodstuffs during the 2011 phthalates incident in Taiwan. J Formos Med Assoc. 2014;113:600–605. [PubMed] [Google Scholar]
20. U.S. Environmental Protection Agency. Phthalates: TEACH Chemical Summary. Document
#905B07006 2007. [Google Scholar]
21. Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE. Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ Health Perspect. 2009;117:86–92. [PMC free article] [PubMed] [Google Scholar]
22. Fromme H, Gruber L, Seckin E, et al. Phthalates and their metabolites in breast milk–results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int. 2011;37:715–722. [PubMed] [Google Scholar]
23. Hannon PR, Flaws JA. The effects of phthalates on the ovary. Front Endocrinol (Lausanne). 2015;6:8. [PMC free article] [PubMed] [Google Scholar]
24. Gianessi LP. Benefits of triazine herbicides. In: Ballantine LG, McFarland JE, Hackett DS, editors. , eds. Triazine Herbicides: Risk Assessment. Vol 683 Washington, DC: American Chemical Society; 1998:1–8. [Google Scholar]
25. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Atrazine. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service; 2003. [Google Scholar]
26. Solomon KR, Giesy JP, LaPoint TW, Giddings JM, Richards RP. Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem. 2013;32:10–11. [PubMed] [Google Scholar]
27. Boucher O, Muckle G, Jacobson JL, et al. Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: results from the Environmental Contaminants and Child Development Study in Nunavik. Environ Health Perspect. 2014;122:310–316. [PMC free article] [PubMed] [Google Scholar]
28. Jurewicz J, Polanska K, Hanke W. Chemical exposure early in life and the neurodevelopment of children–an overview of current epidemiological evidence. Ann Agric Environ Med. 2013;20:465–486. [PubMed] [Google Scholar]
29. Doi H, Nishitani S, Fujisawa TX, et al. Prenatal exposure to a polychlorinated biphenyl (PCB) congener influences fixation duration on biological motion at 4-months-old: a preliminary study. PLoS One. 2013;8:e59196. [PMC free article] [PubMed] [Google Scholar]
30. Herrick RF, McClean MD, Meeker JD, Baxter LK, Weymouth GA. An unrecognized source of PCB contamination in schools and other buildings. Environ Health Perspect. 2004;112:1051–1053. [PMC free article] [PubMed] [Google Scholar]
31. Lauby-Secretan B, Loomis D, Grosse Y, et al. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 2013;14:287–288. [PubMed] [Google Scholar]
32. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995;103(suppl 7):113–122. [PMC free article] [PubMed] [Google Scholar]
33. Portigal CL, Cowell SP, Fedoruk MN, Butler CM, Rennie PS, Nelson CC. Polychlorinated biphenyls interfere with androgen-induced transcriptional activation and hormone binding. Toxicol Appl Pharmacol. 2002;179:185–194. [PubMed] [Google Scholar]
34. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polybrominated Biphenyls and Polybrominated Diphenyl Ethers (PBBs and PBDEs). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service; 2004. [Google Scholar]
35. Zota AR, Park JS, Wang Y, Petreas M, Zoeller RT, Woodruff TJ. Polybrominated diphenyl ethers, hydroxylated polybrominated diphenyl ethers, and measures of thyroid function in second trimester pregnant women in California. Environ Sci Technol. 2011;45:7896–7905. [PMC free article] [PubMed] [Google Scholar]
36. Costa LG, Giordano G. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology. 2007;28:1047–1067. [PMC free article] [PubMed] [Google Scholar]
37. U.S. Environmental Protection Agency. An Exposure Assessment of Polybrominated Diphenyl Ethers. Washington, DC: National Center for Environmental Assessment; EPA/600/R-08/086F; 2010. [Google Scholar]
38. Knower KC, To SQ, Leung YK, Ho SM, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014;21:T33–T55. [PMC free article] [PubMed] [Google Scholar]
39. National Toxicology Program. Report on Carcinogens, 12th Edition Washington, DC: U.S. Department of Health and Human Services, Public Health Service; 2011:12:iii-499. [Google Scholar]
40. McGlynn KA, Quraishi SM, Graubard BI, Weber JP, Rubertone MV, Erickson RL. Persistent organochlorine pesticides and risk of testicular germ cell tumors. J Natl Cancer Inst. 2008;100:663–671. [PubMed] [Google Scholar]
41. Hardell L, van Bavel B, Lindström G, et al. Adipose tissue concentrations of p,p’-DDE and the risk for endometrial cancer. Gynecol Oncol. 2004;95:706–711. [PubMed] [Google Scholar]
42. Porta M, Bosch de Basea M, Benavides FG, et al. Differences in serum concentrations of organochlorine compounds by occupational social class in pancreatic cancer. Environ Res. 2008;108:370–379. [PubMed] [Google Scholar]
43. Codru N, Schymura MJ, Negoita S, et al. Diabetes in relation to serum levels of polychlorinated biphenyls and chlorinated pesticides in adult Native Americans. Environ Health Perspect. 2007;115:1442–1447. [PMC free article] [PubMed] [Google Scholar]
44. Safe SH, Zacharewski T. Organochlorine exposure and risk for breast cancer. Prog Clin Biol Res. 1997;396:133–145. [PubMed] [Google Scholar]
45. Wolff MS, Toniolo PG, Lee EW, Rivera M, Dubin N. Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst. 1993;85:648–652. [PubMed] [Google Scholar]
46. Xu XB, He Y, Song C, et al. Bisphenol A regulates the estrogen receptor α signaling in developing hippocampus of male rats through estrogen receptor. Hippocampus. 2014;24:1570–1580. [PubMed] [Google Scholar]
47. Martinez-Arguelles DB, Campioli E, Lienhart C, et al. In utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate induces long-term changes in gene expression in the adult male adrenal gland. Endocrinology. 2014;155:1667–1678. [PubMed] [Google Scholar]
48. World Health Organization. Global Status Report on Noncommunicable Diseases. Geneva, Switzerland: World Health Organization; 2014. [Google Scholar]
49. World Health Organization. Fact Sheets: Noncommunicable Diseases. Geneva, Switzerland: World Health Organization Media Centre; 2013. [Google Scholar]
50. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–885. [PubMed] [Google Scholar]
51. Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol. 2014;382:740–757. [PubMed] [Google Scholar]
52. Vaxillaire M, Yengo L, Lobbens S, et al. Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia. 2014;57:1601–1610. [PubMed] [Google Scholar]
53. Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11:42. [PMC free article] [PubMed] [Google Scholar]
54. Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB. The pancreatic β-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol. 2009;304:63–68. [PubMed] [Google Scholar]
55. Grandjean P. Late insights into early origins of disease. Basic Clin Pharmacol Toxicol. 2008;102:94–99. [PMC free article] [PubMed] [Google Scholar]
56. Barker DJ, Clark PM. Fetal undernutrition and disease in later life. Rev Reprod. 1997;2:105–112. [PubMed] [Google Scholar]
57. Maffini MV, Sonnenschein C, Soto AM. Development and maturation of the normal female reproductive system: breast. In: Woodruff TJ, Janssen SJ, Guillette LJ, Giudice LC, editors. , eds. Environmental Impacts on Reproductive Health and Fertility. New York, NY: Cambridge University Press; 2010:36–47. [Google Scholar]
58. Newbold RR, Heindel JJ. Developmental exposures and implications for early and latent disease. In: Woodruff TJ, Janssen SJ, Guillette LJ, Giudice LC, editors. , eds. Environmental Impacts on Reproductive Health and Fertility. New York, NY: Cambridge University Press; 2010:93–102. [Google Scholar]
59. Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127:204–215. [PMC free article] [PubMed] [Google Scholar]
60. Gorski RA. Hypothalamic imprinting by gonadal steroid hormones. Adv Exp Med Biol. 2002;511:57–70; discussion 70–53. [PubMed] [Google Scholar]
61. Collman GW. Developmental basis of disease: environmental impacts. J Dev Orig Health Dis. 2011;2:49–55. [Google Scholar]
62. Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301:1111. [PMC free article] [PubMed] [Google Scholar]
63. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23:588S–595S. [PubMed] [Google Scholar]
64. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–353. [PubMed] [Google Scholar]
65. Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185:93–98. [PubMed] [Google Scholar]
66. Hilakivi-Clarke L, de Assis S, Warri A. Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk. J Mammary Gland Biol Neoplasia. 2013;18:25–42. [PMC free article] [PubMed] [Google Scholar]
67. Dieckmann WJ, Davis ME, Rynkiewicz LM, Pottinger RE. Does the administration of diethylstilbestrol during pregnancy have therapeutic value? Am J Obstet Gynecol. 1953;66:1062–1081. [PubMed] [Google Scholar]
68. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284:878–881. [PubMed] [Google Scholar]
69. Troisi R, Hatch EE, Titus-Ernstoff L, et al. Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer. 2007;121:356–360. [PubMed] [Google Scholar]
70. Verloop J, van Leeuwen FE, Helmerhorst TJ, van Boven HH, Rookus MA. Cancer risk in DES daughters. Cancer Causes Control. 2010;21:999–1007. [PMC free article] [PubMed] [Google Scholar]
71. Herbst AL. Summary of the changes in the human female genital tract as a consequence of maternal diethylstilbestrol therapy. J Toxicol Environ Health Suppl. 1976;1:13–20. [PubMed] [Google Scholar]
72. Edelman DA. Urogenital tract changes in female offspring exposed to DES. In: DES/Diethylstilbestrol—New Perspectives. Boston, MA: MTP Press Limited; 1986:69–80. [Google Scholar]
73. Troisi R, Hyer M, Hatch EE, et al. Medical conditions among adult offspring prenatally exposed to diethylstilbestrol. Epidemiology. 2013;24:430–438. [PubMed] [Google Scholar]
74. Harris RM, Waring RH. Diethylstilboestrol–a long-term legacy. Maturitas. 2012;72:108–112. [PubMed] [Google Scholar]
75. Titus-Ernstoff L, Troisi R, Hatch EE, et al. Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation. Epidemiology. 2008;19:251–257. [PubMed] [Google Scholar]
76. Christensen BC, Marsit CJ. Epigenomics in environmental health. Front Genet. 2011;2:84. [PMC free article] [PubMed] [Google Scholar]
77. Rissman EF, Adli M. Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology. 2014;155:2770–2780. [PMC free article] [PubMed] [Google Scholar]
78. Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK. Environmental epigenetics and its implication on disease risk and health outcomes. Ilar J. 2012;53:289–305. [PMC free article] [PubMed] [Google Scholar]
79. Greally JM, Jacobs MN. In vitro and in vivo testing methods of epigenomic endpoints for evaluating endocrine disruptors. Altex. 2013;30:445–471. [PubMed] [Google Scholar]
80. Uzumcu M, Zama AM, Oruc E. Epigenetic mechanisms in the actions of endocrine-disrupting chemicals: gonadal effects and role in female reproduction. Reprod Domest Anim. 2012;47(suppl 4):338–347. [PMC free article] [PubMed] [Google Scholar]
81. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–262. [PMC free article] [PubMed] [Google Scholar]
82. Lister R, Mukamel EA, Nery JR, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905. [PMC free article] [PubMed] [Google Scholar]
83. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–322. [PMC free article] [PubMed] [Google Scholar]
84. Bogdanovic O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 2009;118:549–565. [PMC free article] [PubMed] [Google Scholar]
85. Tiwari VK, McGarvey KM, Licchesi JD, et al. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 2008;6:2911–2927. [PMC free article] [PubMed] [Google Scholar]
86. Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol. 2004;11:1037–1043. [PubMed] [Google Scholar]
87. Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet. 2007;16(spec no. 1):R28–R49. [PubMed] [Google Scholar]
88. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304. [PubMed] [Google Scholar]
89. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19:698–711. [PubMed] [Google Scholar]
90. Brower V. Epigenetics: unravelling the cancer code. Nature. 2011;471:S12–S13. [PubMed] [Google Scholar]
91. Costa FF. Non-coding RNAs, epigenetics and complexity. Gene. 2008;410:9–17. [PubMed] [Google Scholar]
92. Saetrom P, Snøve O, Jr, Rossi JJ. Epigenetics and microRNAs. Pediatr Res. 2007;61:17R–23R. [PubMed] [Google Scholar]
93. Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36:1224–1231. [PubMed] [Google Scholar]
94. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278:1598–1609. [PubMed] [Google Scholar]
95. Gore AC, Martien KM, Gagnidze K, Pfaff D. Implications of prenatal steroid perturbations for neurodevelopment, behavior, and autism. Endocr Rev. 2014;35:961–991. [PMC free article] [PubMed] [Google Scholar]
96. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21:214–222. [PMC free article] [PubMed] [Google Scholar]
97. Walker DM, Gore AC. Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol. 2011;7:197–207. [PMC free article] [PubMed] [Google Scholar]
98. Crews D, McLachlan JA. Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology. 2006;147:S4–S10. [PubMed] [Google Scholar]
99. Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol. 2008;25:2–6. [PMC free article] [PubMed] [Google Scholar]
100. Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J. 2010;24:2273–2280. [PMC free article] [PubMed] [Google Scholar]
101. Newbold RR, Padilla-Banks E, Jefferson WN. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology. 2006;147:S11–S17. [PubMed] [Google Scholar]
102. Newbold RR. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol. 2004;199:142–150. [PubMed] [Google Scholar]
103. Newbold RR. Prenatal exposure to diethylstilbestrol (DES). Fertil Steril. 2008;89:e55–e56. [PubMed] [Google Scholar]
104. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA. 2007;104:13056–13061. [PMC free article] [PubMed] [Google Scholar]
105. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66:5624–5632. [PMC free article] [PubMed] [Google Scholar]
106. Tang WY, Morey LM, Cheung YY, Birch L, Prins GS, Ho SM. Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology. 2012;153:42–55. [PMC free article] [PubMed] [Google Scholar]
107. Susiarjo M, Sasson I, Mesaros C, Bartolomei MS. Bisphenol A exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013; 9:e1003401. [PMC free article] [PubMed] [Google Scholar]
108. Anderson OS, Nahar MS, Faulk C, et al. Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ Mol Mutagen. 2012;53:334–342. [PMC free article] [PubMed] [Google Scholar]
109. Kim JH, Rozek LS, Soliman AS, et al. Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt. Environ Health. 2013;12:33. [PMC free article] [PubMed] [Google Scholar]
110. Salian S, Doshi T, Vanage G. Perinatal exposure of rats to bisphenol A affects the fertility of male offspring. Life Sci. 2009;85:742–752. [PubMed] [Google Scholar]
111. Wolstenholme JT, Goldsby JA, Rissman EF. Transgenerational effects of prenatal bisphenol A on social recognition. Horm Behav. 2013;64:833–839. [PMC free article] [PubMed] [Google Scholar]
112. Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK. Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci USA. 2012;109:9143–9148. [PMC free article] [PubMed] [Google Scholar]
113. Crews D, Gore AC, Hsu TS, et al. Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA. 2007;104:5942–5946. [PMC free article] [PubMed] [Google Scholar]
114. Gillette R, Miller-Crews I, Nilsson EE, Skinner MK, Gore AC, Crews D. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology. 2014;155:3853–3866. [PMC free article] [PubMed] [Google Scholar]
115. Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One. 2010;5:e13100. [PMC free article] [PubMed] [Google Scholar]
116. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–1469. [PubMed] [Google Scholar]
117. Guerrero-Bosagna C, Covert TR, Haque MM, et al. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol. 2012;34:694–707. [PMC free article] [PubMed] [Google Scholar]
118. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One. 2012;7:e36129. [PMC free article] [PubMed] [Google Scholar]
119. Skinner MK, Guerrero-Bosagna C, Haque M, Nilsson E, Bhandari R, McCarrey JR. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS One. 2013;8:e66318. [PMC free article] [PubMed] [Google Scholar]
120. Li L, Zhang T, Qin XS, et al. Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep. 2014;41:1227–1235. [PubMed] [Google Scholar]
121. Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod. 2013;88:112. [PMC free article] [PubMed] [Google Scholar]
122. Wu S, Zhu J, Li Y, et al. Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice. Basic Clin Pharmacol Toxicol. 2010;106:118–123. [PubMed] [Google Scholar]
123. Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol. 2010;77:621–632. [PMC free article] [PubMed] [Google Scholar]
124. Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology. 2011;32:586–595. [PMC free article] [PubMed] [Google Scholar]
125. Kuo HH, Shyu SS, Wang TC. Genotoxicity of low dose N-nitroso propoxur to human gastric cells. Food Chem Toxicol. 2008;46:1619–1626. [PubMed] [Google Scholar]
Pritchard-Jones K, Kaatsch P, Steliarova-Foucher E, Stiller CA, Coebergh JWW. Cancer in children and adolescence in Europe: developments over 20 years and future challenges. European J Cancer. 2006;42:2183–2190. [PubMed] [Google Scholar]
Ferlay J, Autier P, Boniol M, Heaune M, Colombet M, Boyle P. Estimates of the incidence and mortality in Europe in 2. Annals of Oncology. 2007;18:581–592. [PubMed] [Google Scholar]
Moss RL, Gu O, Wong M. Estrogen: nontranscriptional signaling pathway. Recent Prog Horm Res. 1997;52:33–68. [PubMed] [Google Scholar]
Wooley CS. Acute effects of estrogen on neuronal physiology. Ann RevPharmacol Toxicol. 2007;47:657–80. [PubMed] [Google Scholar]
Fucic A, Miškov S, Zeljezic D, Bogdanovic N, Katic J, Gjergja R, Karelson E, Gamulin M. Is the role of estrogens and estrogen receptors in epilepsy still underestimated? Medical Hypotheses. 2009;73:703–705. [PubMed] [Google Scholar]
Chen GC, Zeng Q, Tse GMK. Estrogen and its receptors in cancer. Med Res Review. 2008;28(6):954–974. [PubMed] [Google Scholar]
Gonzales RJ, Ansar S, Duckles SP, Krause DN. Androgenic/estrogenic balance in the male rat cerebral circulation: metabolic enzymes and sex steroid receptors. J Cereb Blood Flow Metab. 2007;27(11):1841–1852. [PMC free article] [PubMed] [Google Scholar]
Lemmen JG, Arends RJ, van Boxtel AL, van der Saag PT, van der Burg B. Tissue and time dependent estrogen receptor activation in estrogen reporter mice. J Mol Endocrinol. 2004;32:689–701. [PubMed] [Google Scholar]
Roy D, Liehr JG. Estrogen DNA damage and mutations. Mutat Res. 1999;424:107–115. [PubMed] [Google Scholar]
Knapczyk K, Duda M, Szafranska B, Wolsza K, Panasiewicz G, Koziorowski M, Slomczynska M. Immunolocaliosation of oestrogen receptors alpha (Eralpha) and beta (Erbeta) in porcine embryos and fetuses at different stages of gestation. Acta Vet Hung. 2008;56(2):221–233. [PubMed] [Google Scholar]
Branderberger AW, Tee MK, Lee JY, Chao V, Jaffe RB. Tissue distribution of estrogen receptors alpha (Er?) and beta (Erβ) mRNA in the midgestational human fetus. J Clin Endocrinol & Metabolism. 1997;82(10):3509–3512. [PubMed] [Google Scholar]
Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC. Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res. 2004;64(1):423–428. [PubMed] [Google Scholar]
Grabinski JL, Chisholm G, Smith LS, Drengler RL, Kalter S, Rodriguez G, Garner A, Cooper J, Pollock B, Kuhn J. ER alpha genotypes and breast cancer. J Clin Oncol. 2008;26(15S):501. [Google Scholar]
Hall JM, Korach KS. Analysis of the molecular mechanisms of human estrogen receptors alpha and beta reveals differential specificity in taret promotor regulation by xenoestrogens. J Biol Chem. 2002;277(46):44455–44461. [PubMed] [Google Scholar]
Cavalieri EL, Stack DE, Devanesan PD. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Nat Acad Sci USA. 1997;94:10937–10942. [PMC free article] [PubMed] [Google Scholar]
Roy D, Cai Q, Felty Q, Narayan S. Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage and estrogen dependent cancers. J Toxicol Environ Health, Part B. 2007;10(4):235–257. [PubMed] [Google Scholar]
Dubrova YE, Ploshchanskaya OG, Kozionova OS, Akleyev AV. Minisatellite germline mutation rate in the Techa River population. Mutat Res. 2006;602(1-2):74–82. [PubMed] [Google Scholar]
Kaup S, Grandjean V, Mukherjee R, Kapoor A, Keyes E, Seymour CB, Mothersill CE, Schofield PN. Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat Res. 2006;597(1-2):87–97. [PubMed] [Google Scholar]
Liehr JG. Genotoxicity of the steroidal oestrogens oestrone and oestradiol:possible mechanism of uterine and mammary cancer development. Hum Reprod Update. 2001;7(3):273–281. [PubMed] [Google Scholar]
Ansell PJ, Espinosa-Nicholas C, Curran EM, Judy BM, Philips BJ, Hannink M, Lubahn DB. In vitro and in vivo regulation of antioxidant response element-dependent gene expression by estrogens. Endocrinology. 2004;145(1):311–7. [PubMed] [Google Scholar]
Arbuckle TE. Are there sex and gender differences in acute exposure to cheicals n the same setting? Environ Res. 2006;101:195–204. [PubMed] [Google Scholar]
Alworth LC, Howdesshell KL, Ruhlen RL, Day JK, Lubahn DB, Huang HM, Besch-Williford CL, Saal FS. Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methychlor in CD-1 M, Effects of low versus high doses. Toxicol Appl Pharmacol. 2002;183:10–22. [PubMed] [Google Scholar]
Rosenthal MD, Albrecht ED, Pepe GJ. Estrogen modulates developmentaly regulated gene expression in the fetal baboon liver. Endocrine. 2004;23(2-3):219–228. [PubMed] [Google Scholar]
Darbre PD. Environmental oestrogens, cosmetics and breast cancer. Best Practice & Research. Clin Endocrinol & Metabolism. 2006;20(1):121–143. [PubMed] [Google Scholar]
Barbieri RL, Gochberg J, Ryan KJ. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J Clin Invest. 1986;77(6):1727–1733. [PMC free article] [PubMed] [Google Scholar]
Wang SL, Chang YC, Chao HR, Li CM, Li LA, Lin LY, Papke O. Body burdens of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls and their relations to estrogen metabolism in pregnant women. EHP. 2006;114(5):740–745. [PMC free article] [PubMed] [Google Scholar]
Hsieh M, Grantha E, Liu B, Macapagai R, Willingham E, Baskin LS. In utero exposure to benzophenone-2 causes hypospadias through an estrogen receptor dependent mechanisms. J Urol. 2007;178:1637–1642. [PubMed] [Google Scholar]
Birnbaum LS, Fenton S. Cancer and developmental exposure to endocrine disruptors. EHP. 2003;111(4):389–394. [PMC free article] [PubMed] [Google Scholar]
Andersen HR, Bonefeld-Jorgensen EC, Nielsen F, Jarfeldt K, Jayatissa MN, Vinggaard AM. Estrogen effects in vitro and in vivo of the fungicide fenarimol. Toxicol Lett. 2006;163(2):142–152. [PubMed] [Google Scholar]
Hery C, Ferlay J, Boniol M, Autier P. Changes in breast cancer incidence and mortlaity in middle-aged and elderly women in 28 countries with Causcasian mjaroty populations. Annals of Oncology. 2008;19:1009–1018. [PubMed] [Google Scholar]
Kovalchuk O, Tryndiyak P, Montgomery B, Boyko A, Kutanzi K, Zemp F, Warbritton AR, Latendresse JR, Kovalchuk I, Beland FA, Pogrybny IP. Estrogen-induced at breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle. 2007;6(16):2010–8. [PubMed] [Google Scholar]
Feigelson HS, Henderson BE. Estrogens and breast cancer. Carcinogenesis. 1996;17(11):2279–84. [PubMed] [Google Scholar]
Bernstein JL, Langholz B, Haile RW, Bernstein L, Thomas DC, Stovall M, Malone KE, Lynch CF, Olsen JH, Anton-Culver H, Shore RE, Boice JD, Berkowitz GS, Gatti RA, Teitelbaum SL, Smith SA, Rosenstien BS, Borresen-Dale AL, Concannon P, Thompson WD. Study design:evaluating gene-environment interactions in the etiology of breast cancer- the WECARE study. Breast Cancer Res. 2004;6:199–214. [PMC free article] [PubMed] [Google Scholar]
Mitra AK, Faruque FS, Avis AL. Breast cancer and environmental risks: where is the link? J Environ Health. 2004;66(7):24–32. [PubMed] [Google Scholar]
Zhang Y, Wise JP, Holford TR, Xie H, Boyle P, Hoar Zahm SH, Rusiecki J, Zou K, Zhang B, Zhu Y, Owens PH, Zheng T. Serum polychlorinated biphenyls P-450 1A1 polymorphisms, and risk of breast cancer in Connecticut women. Am J Epidemiol. 2004;160:1177–1183. [PubMed] [Google Scholar]
Nie J, Beyea J, Bonner MR, Han D, Vena JE, Rogerson P, Vito D, Muti P, Trevisan M, Edge SB, Freudenheim JL. Exposure to traffic emissions through life and risk of breast cancer: the western New Your exposure and breast cancer (WEB) study. Cancer Causes & Control. 2007;18(9):947–955. [PubMed] [Google Scholar]
Hilakivi-Clarke L, Cabanes A, de Assis S, Wang M, Khan G, Shoemaker WJ, Stevens RG. In utero alcohol exposure increases mammary tumorigenesis in rats. Brit J Cancer. 2004;90:2225–2231. [PMC free article] [PubMed] [Google Scholar]
Warri A, Saarinen NM, Makela S, Hilakivi-Clarke L. The role of early life genistein exposures in modifying breast cancer risk. BJC. 2008;98:1485–1493. [PMC free article] [PubMed] [Google Scholar]
Baik I, Becker PS, DeVito WJ, Lagiou P, Ballen K, Quesenberry PJ, Hsieh P. Stem cells and prenatal origin of breast cancer. Cancer Causes and Control. 2004;15:517–530. [PubMed] [Google Scholar]
Brody JG, Rudel RA. Environmental pollutants and breast cancer. EHP. 2003;111(8):1007–19. [PMC free article] [PubMed] [Google Scholar]
Brody JG, Aschengrau A, McKelvey W, Swartz CH, Kennedy T, Rudel RA. Breast cancer risk and drinking water contaminated by wastewater: a case control study. Environ Health. 2006;6:5–28. [PMC free article] [PubMed] [Google Scholar]
Brody JG, Rudel RA, Michels KB, Moysich KB, Bernstein L, Attfiled KR, Gray S. Environmental pollutants, diet, physical activity, body size and breast cancer. Cancer (Suppl) 2007;109(12):2627–2634. [PubMed] [Google Scholar]
Coutelle C, Hohn B, Benesova M, Oneta CM, Quattrochi P, Roth HJ, Schmidt-Gayk H, Schneeweiss A, Bastert G, Seitz HK. Risk factor in alcohol associated breast cancer: Alcohol dehydrogenase polymorphism and estrogens. Int J Oncology. 2004;25(4):1127–1132. [PubMed] [Google Scholar]
Fan S, Meng Q, Gao B, Grossman J, Yadegari M, Goldberg ID, Rosen EM. Alcohol stimulates estrogen receptor signaling in human breast cancer cell lines. Cancer Res. 2000;60:5635–5639. [PubMed] [Google Scholar]
Li XM, Ganmma D, Sato A. The experience of Japan as a clue to the etiology of breast and ovarian cancers: relatioship between death from both malignancies and dietary practices. Med Hypothesis. 2003;60(2):268–275. [PubMed] [Google Scholar]
Ganmaa D, Sato A. The possible role of female sex hormones in milk from cows in the development of breast, ovarian and corpus uteri cancers. Medical Hypothesis. 2005;65:1028–1037. [PubMed] [Google Scholar]
Ganmaa D, Wang PY, Qin LQ, Hoshi K, Sato A. Is milk repossible for male reproductive disorders. Med Hypothesis. 2001;57:510–514. [PubMed] [Google Scholar]
Bennion BJ, Cosman M, Lightstone FC, Knize MG, Montgomery JL, Bennett LM, Felton JS, Kulp KS. PhIP carcinogenicity in breast cancer: computational and experimental evidence for competitive interactions with human estrogen receptor. Chem Res Toxicol. 2005;18:1528–1536. [PubMed] [Google Scholar]
Lauber SN, Gooderham NJ. The cooked meat-derived genotoxic carcinogen 2-amino-3-methylimidazol (4,5-b) pyridine has potent hormone-like activity: mechanistic support for a role in breast cancer. Cancer Res. 2007;67:9597–9602. [PubMed] [Google Scholar]
Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S, Sugimura T. A new colon and mammary carcinogen in cooked food 2-amino-1-methyl-6-phenylimidazo (4,5b)pyridine (PhIP) Carcinogenesis. 1991;12:1503–1506. [PubMed] [Google Scholar]
Snyderwine EG. Mammary gland carcinogenesis by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rats: possible mechanisms. Cancer Lett. 1999;143(2):211–5. [PubMed] [Google Scholar]
Bonner MR, Han D, Nie J, Rogerson P, Vena JE, Muti P, Trevisan M, Edge SB, Freudenheim JL. Breast cancer risk and exposure in early life to polycyclic aromatic hydrocarbons using total suspended particulates as a proxy measure. Cancer Epidemiol Biomarkers Prev. 2005;14(1):53–60. [PubMed] [Google Scholar]
Coyle YM, Hynan LS, Euhus DM, Minhajuddin ATM. An ecological study of the association of environmental chemicals on breast cancer incidence in Texas. Breast Cancer Res Treatment. 2005;92:107–114. [PubMed] [Google Scholar]
Ohayama K, Magai F, Tsuchiya Y. Certain styrene oligomers have proliferative activity on MCF-7 cells and binding affinity for human estrogen receptor alpha. EHP. 2001;109:699–703. [PMC free article] [PubMed] [Google Scholar]
Ohyama KI, Satoh K, Sakamoto Y, Ogata A, Nagai F. Effects of prenatal exposure to styrene trimers on genital organs and hormones in male rats. Exp Biol Med. 2007;232(2):301–308. [PubMed] [Google Scholar]
Kitamura S, Ohmegi M, Sanoh S, Sugihara K, Yoshihara S, Fujimoto N, Ohta S. Estrogenic activity of styrene oligomers after metabolic activation by rat liver microsomes. EHP. pp. 329–334. [PMC free article] [PubMed]
Charlier CJ, Albert AI, Zhang L, Dubois NG, Plomteux GJ. Polychlorinated byphenyls contamination in women with breast cancer. Clin Chimaca Acta. 2004;347:177–181. [PubMed] [Google Scholar]
Moysich KB, Menezes RJ, Baker JA, Falkner KL. Environmental exposure to plychlorinated biphenyls and breast cancer risk. Rev Environ Health. 2002;17(4):263–277. [PubMed] [Google Scholar]
Boffetta P. Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res. 2006;608:157–162. [PubMed] [Google Scholar]
Stabile LP, Davis AL, Gubish CT, Hopkins TM, Luketich JD, Christie N. Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological response to estrogen. Cancer Res. 2002;62:2141–2150. [PubMed] [Google Scholar]
Fasco MJ, Hurteau GJ, Spivack SD. Gender dependent expression of alpha and beta estrogen receptors in human nontumor and tumor lung tissue. Mol Cell Endocrinol. 2002;188(1-2):125–140. [PubMed] [Google Scholar]
Stabile LP, Siefried JM. Sex and gender differences in lung cancer. J Gend Specif Med. 2003;6(1):37–48. [PubMed] [Google Scholar]
Rivera MP. Lung cancer in women: the difference in epidemiology, biology and treatment outcomes. Expert Rev Resp Med. 2009;3(6):627–634. [PubMed] [Google Scholar]
Olak J, Colson Y. Gender differences in lung cancer: have we really come a long way, baby? J Thorac Cardiovasc Surg. 2004;128:346–351. [PubMed] [Google Scholar]
Jemal A, Siegel R, Ward E. Cancer Statistics. Cancer J Clin. 2006;56:106. [PubMed] [Google Scholar]
Vineis P, Forastiere F, Hoek G, Lipsett M. Outdoor air pollution and cancer: recent epidemiologic evidence. Int J Cancer. 2004;111:647–652. [PubMed] [Google Scholar]
Whitrow MJ, Smith BJ, Pilotto LS, Pisaniello D, Nitschke M. Environmental exposure to carcinogens causinglung cancer: epidemiological evidence from the medical literature. Respirology. 2003;8:513–521. [PubMed] [Google Scholar]
Yang CY, Chiu HF, Chiu JF, Kao WY, Tsai SS, Lan SJ. Cancer mortality and residence near petrochemical industries in Taiwan. J Toxicol Environ Health. 1997;50:265–273. [PubMed] [Google Scholar]
Majidi M, Al-Wadel HA, Takahashi T, Schuller HM. Nongenomic beta estrogen receptor enchance beta1 adrenergic signaling induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human small airway epithelial cells. Cancer Res. 2007;67:6863–6874. [PubMed] [Google Scholar]
Zhao Y, Wang S, Aunan K, Seip HM, Hao J. Air pollution and lung cancer risks in China- a meta-analysis. Sci Total Environ. 2006;366:500–513. [PubMed] [Google Scholar]
Ramanakumar AV, Parent ME, Siemiatycki J. Risk of lung cancer from residential heating and cooking fuels in Montreal, Canada. Am J Epidemiol. 2007;165:634–642. [PubMed] [Google Scholar]
Schwartz AG, Prysak GM, Murphy V, Lonardo F, Pass H, Schwartz J, Brooks S. Nuclear estrogen receptorbeta in lung cancer: expression and survival differences by sex. Imaging, Diagnosis, Prognosis. 2005;11(20):7280–7287. [PubMed] [Google Scholar]
Skov BG, Fischer BM, Pappot H. Oestrogen receptor beta over expression in males with non-small cell cancer is associated with beter survival. Lung Cancer. 2008;59(1):88–94. [PubMed] [Google Scholar]
Xu R, Shu Y. Estrogen and its signaling pathway in non-small cell lung cancer (NSCLC) J Najing Med Univ. 2009;23(4):217–223. [Google Scholar]
Beyer C, Küppers E, Karolczak M, Trotter A. Ontogenetic expression of estrogen and progesterone receptors in the mouse lung. Biol Neonate. 2003;84(1):59–63. [PubMed] [Google Scholar]
Oyama T, Sugio K, Isse T, Matsumoto A, Uramoto NH, Nozoe T, Morita M, Kagawa N, Muto TM, Yasumoto K, Kawamoto T. Expression of cytochrome P450 in non-small lung cancer. Frontiers Biosci. 2008;13:5787–5793. [PubMed] [Google Scholar]
Slatore CG, Chien JW, Au DH, Satia JA, White E. Lung cancer and hormone replacement therapy:association in the vitamins and lifestyle study. J Clin Oncol. 2010;28(9):1540–1546. [PMC free article] [PubMed] [Google Scholar]
Matsuo K, Ito H, Yatabe Y, Hiraki A, Hirose K, Wakai K. Risk factors differ for non-small-cell lung cancer with and without EFGR mutation:assessment of smoking and sex by a case-control study in Japanese. Cancer Sci. 2007;98(1):96–101. [PubMed] [Google Scholar]
Samet JM. Environmental causes of lung cancer: what do we know in 2003? Chest. 2004;125:80–83. [PubMed] [Google Scholar]
Pauly JR, Slotkin TA. Maternal tobacco smoking, nicotine replacement and neurobeahavioural development. Acta Paediatrica. 2008;97(10):1331–1337. [PubMed] [Google Scholar]
Sarasin A, Schlumpf M, Muller M, Fleishmann I, Lauber ME, Lichtenstein. Adrenal-mediated rather than direct effects of nicotine as a basis of altered sex steroid synthesis in fetal and neonatal rat. Reprod Toxicol. 2003;17(2):153–162. [PubMed] [Google Scholar]
Muggi ME, Elbert JO, Robertson C, Hurt RD. Waking a sleeping ginat: the tobacco industry’s response to the Polonium-210 issue. Am J Pub Health. 2008;98(9):1643–1650. [PMC free article] [PubMed] [Google Scholar]
Raymond-Whish S, Mayer LP, O’Neal T, Martinez A, Sellers MA, Christian PJ, Marion SL, Begay C, Propper CR, Hoyer PB, Dyer CA. Drinking water with Uranium below the US EPA water standard causes estrogen receptor-dependent responses in female mice. EHP. 2007;115(12):1711–1716. [PMC free article] [PubMed] [Google Scholar]
Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Jerrett M, Hughes E, Armstrong B, Brunekreef B. Long-term effects of traffic-related air pollution on mortality in a Ducth cohort (NLCS-AIR Study) EHP. 2008;116(2):196–202. [PMC free article] [PubMed] [Google Scholar]
Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution and mortality. Am J Respir Crit Care Med. 2006;173:667–672. [PMC free article] [PubMed] [Google Scholar]
Misaki K, Suzuki M, Nakamura M, Handa H, Iida M, Kato T, Matsui S, Matsuda T. Aryl hydrocarbon receptor and estrogen receptor ligand activity of organic exctracts from road dust and diesel exhaust particulates. Arch Environ Contam Toxicol. 2008;55:199–209. [PubMed] [Google Scholar]
Ssempebwa JC, Carpenter DO, Yilmaz B, DeCaprio AP, O’Hehir DJ, Arcaro KF. Waste crankcase oil: an environmental contaminant with potential to modulate estrogenic responses. J Toxicol Environ Health, Part A. 2004;67:1981–1094. [PubMed] [Google Scholar]
Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headly J, Verstraete W, Siciliano S. Human colon microbiota trasnform polycyclic aromatic hydrocarbons to estrogenic metablites. EHP. 2005;113:6–10. [PMC free article] [PubMed] [Google Scholar]
Klein GP, Hodge EM, Diamond ML, Yip A, Dann T, Stern G, Denison MS, Harper PA. Gas-Phase ambient air contaminants exhibit significant dioxin-like and estrogen-like activity in vitro. EHP. 2006;114(5):697–703. [PMC free article] [PubMed] [Google Scholar]
Cohen AJ. Outdoor air pollution and lung cancer. EHP. 2000;108:743–750. [PMC free article] [PubMed] [Google Scholar]
Parodi S, Baldi R, Benco C, Franchini M, Garrone E, Vercelli M, Pensa F, Puntoni R, Fontana V. Lung cancer mortality ina district of La Spezia (Italy) exposed to air pollution from industrial plants. Tumori. 2004;90:181–185. [PubMed] [Google Scholar]
Shen J, Liu J, Xie Y, Diwan BA, Waalkes MP. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by the utero arsenic exposure. Toxicol Sci. 2007;95(2):313–320. [PMC free article] [PubMed] [Google Scholar]
Tanaka Y, Sasaki M, Kaneuchi M, Fujimoto S, Dahiya R. Estrogen receptor alpha polymorhism and renal cell carcinoma- possible risk. Mol Cellular Endocrinol. 2003;202:109–116. [PubMed] [Google Scholar]
Moyad MA. Review of potential risk factors for kidney (renal cell) cancer. Semin Urol Oncol. 2001;19:280–293. [PubMed] [Google Scholar]
Ilyasova D, Schwartz GG. Cadmium and renal cancer. Toxicol Applied Pharmacol. 2005;207:179–186. [PubMed] [Google Scholar]
Hopenhayn-Rich C, Biggs ML, Smith AH. Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol. 1998;27:561–569. [PubMed] [Google Scholar]
Søreide K, Aagnes B, Møller B, Westgaard A, Bray F. Epidemiology of pancreatic cancer in Norway: trends in incidence, basis of diagnosis and survival 1965-2007. Scand J Gastroenterol. 2010;45(1):82–92. [PubMed] [Google Scholar]
Luke C, Price T, Karapetis C, Singhai N, Roder D. Pancreatic cancer epidemiology and survival in an Australia population. Asian Pac J cancer Prev. 2009;10(3):369–374. [PubMed] [Google Scholar]
Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford) 2008;10(1):58–62. [PMC free article] [PubMed] [Google Scholar]
Sauerland C, Engelking C, Wickham R, Pearlstone DB. Cancers of the pancreas and hepatobilliary system. Seminars in Oncol Nursing. 2009;25(1):76–92. [PubMed] [Google Scholar]
Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Practice & Res Clin Gastroenteol. 2006;20(2):197–209. [PubMed] [Google Scholar]
Konduri S, Schwartz RE. Estrogen receptor beta/alfa ratio predicts response of pancreatic cancer cells to estrogens and phytoestrogens. J Surgical Res. 2007;140:55–66. [PubMed] [Google Scholar]
Andren-Sandberg A, Hoem D, Backman PL. Other risk factors for pancreatic cancer: hormonal aspects. Ann Oncol. 1999;10(Suppl 4):131–132. [PubMed] [Google Scholar]
Trushin N, Leder G, El Bayoumy K, Hoffmann D, Beger HG, Henne-Bruns D, Ramadani M, Prokopcyk B. The tobacco carcinogen NNK is stereoselectively reduced by human pancreatic microsomes and cytosols. Langenbecks Ach Surg. 2008;393:571–579. [PubMed] [Google Scholar]
Kummer V, Maskova J, Zraly Z, Matiasovic J, Faldyna M. Effect of postnatal exposure to benz(a)pyrene on the uterus of immature rats. Exp Toxicol Pathol. 2007;59(1):69–76. [PubMed] [Google Scholar]
Bogush TA, Dudko EA, Beme AA, Bogush EA, Polotskii BE, Tiuliandin SA, Davydov MI. Estrogen receptor expression in tumors different from breast cancer. Antibiot Khimioter. 2009;54(7-8):41–49. [PubMed] [Google Scholar]
Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507. [PMC free article] [PubMed] [Google Scholar]
Batistatou A, Kyzas PA, Goussia A, Arkoumani E, Voulgaris S, Polyzoidis K, Agnantis NJ, Stefanou D. Estrogen receptor beta (ERbeta) protein expression correlates with BAG-1 and prognosis in brain glial tumours. J Neurol. 2006;77(1):17–23. [PubMed] [Google Scholar]
Estrada M, Varshney A, Ehrilich BE. Elevated testosterone induces apoptosis in neuronal cells. Biol Chem. 2006;281(35):25492–25501. [PubMed] [Google Scholar]
Liu CC, Chen CC, Wu TN, Yang CY. Association of brain cancer with residential exposure to petrochemical air pollution in Taiwan. J Toxicol Environ Health, Part A. 2008;71:310–314. [PubMed] [Google Scholar]
Huyghe E, Plante P, Thonneau PF. Testicular cancer variations in time and sapce in Europe. Eur Urol. 2007;51:621–628. [PubMed] [Google Scholar]
Maffezzini M. TC incidence increasing: spread the word. European Urology. 2007;51:596–597. [PubMed] [Google Scholar]
Cavaco JE, Laurentino SS, Barros A, Sousa M, Socorro S. Estrogen receptors alpha and beta in human testis: both isoforms are expressed. Syst Biol Reprod Med. 2009;55(4):137–144. [PubMed] [Google Scholar]
Delbes G, Duquenne C, Szenker J, Taccon J, Habert R, Levacher C. Developmental changes in testicular sensitivity to estrogens through feral and neonatal life. Toxicol Sci. 2007;99(1):234–243. [PubMed] [Google Scholar]
Kaijser M, Akre O, Cnattinius S, Ekbom A. Maternal lung cancer and testicular cancer risk in the offspring. Cancer Epidemiol Biomarkers, Prevention. 2003;12:643–646. [PubMed] [Google Scholar]
Swerdlow AJ, Stiller CA, Wilson LM. Prenatal factors in the aetiology of testicular cancer: an epidemiological study of childhood testicular cancer deaths in Great Britain, 1953-73. J Epidemiol Community Health. 1982;36(2):96–101. [PMC free article] [PubMed] [Google Scholar]
Smith LM, Cloak CC, Poland RE, Torday J, Ross MG. Prenatal nicotine increase testosterone levels in the fetus and females offspring. Nicotine Tob Res. 2003;5(3):369–374. [PubMed] [Google Scholar]
Storgaard L, Bonde JP, Olsen J. Male reproductive disorders in humans and prenatal indicators of estrogen exposure. A review of published epidemiological studies. Reprod Toxicol. 2006;21(1):4–15. [PubMed] [Google Scholar]
McLachlan JA, Simpson E, Martin M. Endocrine disrupters and female reproductive health. Best Pract Res Clin Endocrinol Metab. 2006;20(1):63–75. [PubMed] [Google Scholar]
Drummond E, Fuller PJ. The importance of ERbeta signalling in the ovary. J Endocrinol. 2010;205(1):15–23. [PubMed] [Google Scholar]
Amram-Benamran ML, Cochet S, Petignat P, Sappino AP. Ovarian cancer screening: recommendations for clinical pratice. Rev Med Suisse. 2010;6(250):1066–1068. [PubMed] [Google Scholar]
Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med. 2004;229:383–392. [PubMed] [Google Scholar]
Grant WB. An ecologic study of dietary and solar ultraviolet-B links to breast carcinoma mortality rate. Cancer. 2002;94(1):272–281. [PubMed] [Google Scholar]
El-Zein R, Conforti-Froes N, Au WW. Interactions between genetic predisposition and environmental toxicants for development of lung cancer. Environ Mol Mutagenesis. 1997;30:196–204. [PubMed] [Google Scholar]
Park SK, Yoo KY, Lee SJ, Kim SU, Ahn SH, Noh DY, Choe KJ, Strickland PT, Hirvonen A, Kang D. Alcohol consmtion, glutathione S-transferase M1 and T1 genetic polymorphysim and breast cancer risk. Pharmacogenetics. 2000;10:301–309. [PubMed] [Google Scholar]
Wadia PR, Vanderberg LN, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM. Perinatal bisphenol A exposure increases estrogen sensitivity of the mammary gland in diverse mouse strain. EHP. 2007;115(4):592–598. [PMC free article] [PubMed] [Google Scholar]
Prins GS, Tang WY, Belmonte J, Ho SM. Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: epdegenetic mode of action is implicated. Fertility and Strerility. 2008;89(Suppl 1):41–42. [PMC free article] [PubMed] [Google Scholar]
Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H. Steroid and xenobiotic receptor (XR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cellular Endocrinol. 2005;231:75–85. [PubMed] [Google Scholar]